Skip to main content
Advertisement

< Back to Article

Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency

Figure 6

Differential effects of frequency modulation upon phase-zero synchronization in Types I and II cortical pyramidal cell networks.

(A,B) Phase-zero synchrony (as measured by the bursting parameter, B) of Type I and Type II cortical pyramidal neuronal networks as a function of synaptic coupling strength and the re-wiring parameter, . The left panels show values of B for networks stimulated with a high applied current ( for Type I and for Type II), and the middle panels show values of B for networks with a low applied current ( for Type I and for Type II). The right panel subtracts the low-frequency values of B from the high-frequency values of B. Note the pronounced negative-difference region in the Type II plot, while the Type I plot shows almost exclusively zero or positive values of the difference. (C,D) Raster plots of the last 100 ms of simulations of high-frequency (C) and low-frequency (D) Type I networks with network parameters and . (E,F) Raster plots of the last 1000 ms of simulation of (E) high-frequency and (F) low-frequency Type II networks with network parameters and . The difference in synaptic coupling values between Type I and Type II networks was due to the fact that the Type II networks synchronized better than the Type I networks and therefore required much smaller synaptic coupling values to appreciably synchronize.

Figure 6

doi: https://doi.org/10.1371/journal.pcbi.1002062.g006