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Genealogical estimation of variant age (GEVA)

Here we introduce our methodology to estimate the age of genetic variants; the point in time

when a mutation gave rise to the allele observed at a particular locus in sample data. In

principle, we can estimate the age of any variant segregating at any frequency in a population,

without being affected by the selective forces that acted on the allele. Our method has several

useful properties:

• It does not require a demographic model or assumptions about relatedness among sampled

individuals. Parametric models are used within the approach to detect recombination

breaks, account for error, and obtain a posterior distribution on the time to the most

recent common ancestor (TMRCA) for pairs of haplotypes, but the underlying approach to

estimate allele age is agnostic with respect to the genealogical process.

• It makes full use of the information available in whole genome sequencing data, combining

information from both the mutation and recombination clocks inherent in population

genetic data.

• It is scalable. By sampling pairs of individuals, the computational costs can be limited,

with little loss of power. For example, the probability of sampling the deepest root within

the coalescent tree of a population in a subsample of size n is approximately (n+1)/(n−1),

suggesting that the most recent common ancestor (MRCA) of a subsample usually captures

the MRCA of the larger sample. The probability of capturing the nearest discordant clade

is more dependent on sample size (and the true age of the variant).
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• It is robust to errors. Real data has sequencing or genotyping error, as well as haplotype

phasing error, which can create problems in identifying haplotypes that carry a variant of

interest and may create false breaks in haplotypes. We use empirically calibrated models

of genotype error, which we measured in sequencing data, and we use filters to identify

outliers in TMRCA distributions. The approach also makes the algorithm robust to low

levels of recurrent mutation.

• It can combine information from different data sources. The core algorithm within GEVA

combines information from many pairwise comparisons around a variant of interest.

The comparisons can be performed across many data sets, potentially even distributed

ones, with the only data needing to be shared being the parameter values of the pairwise

posterior TMRCA distributions.

We refer to our method as the genealogical estimation of variant age (GEVA), which we

developed as an integrated, analytical framework. We implemented GEVA in C++ and made

the source code available online.*

1 Genealogical approach

Our goal is to estimate the age of an allele at target site k, of which there are xk copies in

a sample of size N haploid chromosomes. We assume that a mutation occurred only once

at site k in the history of the population and that there was no back-mutation. The allele is

therefore assumed to derive from a mutation event in the genome of the common ancestor of

the chromosomes that carry the allele. We assume that we know the ancestral and derived

allelic states with certainty and that haplotypes have been phased.

We divide the sample into two disjoint subsets, Xk and Yk, consisting of carrier and

non-carrier haplotypes, respectively. By tracing back the ancestry of the chromosomes in

Xk, we expect that all of them share a common ancestor by the time of the focal mutation

event and that the mutation occurred before any of them share a common ancestor with a

chromosome in Yk.

The genealogy of the sample at site k is generally unknown. However, we can identify

pairs of chromosomes whose lineages have a common ancestor either before or after the time

of the focal mutation event.

• Concordant pairs. Any two carrier haplotypes are expected to coalesce more recently than

the time of the focal mutation event. Specifically, they will have coalesced by the time of

the node in the tree below where the mutation occurred.

• Discordant pairs. Any pair composed of one carrier and one non-carrier haplotype is

expected to coalesce further back in time, prior to the time of the focal mutation event.

Specifically, they will coalesce at or after the time of the node in the tree above where the

mutation occurred.

* https://github.com/pkalbers/geva
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Informally, the time of mutation is delimited by two time points; the time the subtree

below the mutation has coalesced into a single lineage of the most recent common ancestor

(MRCA) carrying the derived allele, and the time this subtree coalesced with the remaining

sample. Note that we require xk > 1 carrier haplotypes to form at least one concordant pair

and, likewise, xk < N to form at least one discordant pair. While in principle it would be

possible to use only disconcordant pairs to approximate an upper bound of allele age, for

example, if only one chromosome carries the allele (singletons), or only concordant pairs to

approximate a lower bound if all chromosomes carry the allele, we did not consider such

cases here.

2 Sampling of haplotype pairs

The numbers of concordant and discordant pairs grow quadratically with sample size (for

a fixed allele frequency), which can be computationally prohibitive. The set containing all

possible concordant pairs that can be formed for a given target allele at site k is given by

Ck =
{
{i, j} : i, j ∈ Xk, i 6= j

}
(1)

and the set containing all possible discordant pairs is given by

Dk =
{
{i, j} : i ∈ Xk, j ∈ Yk

}
, (2)

which are subsets of N(N − 1)/2 possible pairs in the sample. There are |Ck| = xk(xk − 1)/2

possible concordant pairs and |Dk| = xk(N − xk) discordant pairs. We use two different

sampling strategies to limit the computational cost while maintaining accuracy (described

below). The maximum number of pairs sampled per group are user-defined parameters;

maxC for concordant pairs, and

maxD for discordant pairs.

Concordant pairs. We sample concordant pairs uniformly at random. The probability that

a subsample of Xk includes at least one pair that spans the TMRCA for the subtree depends

on the number of descendants of the two branches leading to the MRCA. In a neutral model,

this partition is uniform, hence for large sample size, a random draw of a chromosomes from

Xk will include the MRCA with probability of at least (a− 1)/(a+ 1). This implies that a

random sample of concordant pairs will include the MRCA of the samples that carry the

variant with high probability. Examples of the distribution of pairwise TMRCA distributions

for variants at different frequencies are shown in the figure on Page 4.

Discordant pairs. Our approach to sample discordant pairs is based on prioritizing non-

carrier haplotypes that are the nearest genealogical neighbors to the subtree below the
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mutation. By the time the subsample of carrier haplotypes has merged into a single lineage,

the subsample of non-carrier haplotypes will have collapsed into an unknown number of

ancestral lineages, which may also collapse further before joining with the remaining lineage.

Dependent on the age of the allele and the ancestral background of the sample, the number

of distinct nodes at which discordant pairs coalesce in the tree above the mutation can be

relatively small; see figure below for examples. A randomly formed subset of discordant

pairs would likely capture a large proportion of pairs that coalesce at a node close to or at

the MRCA of the sample.

Distribution of coalescence times for concordant and discordant pairs. Coalescence time distributions
for concordant and discordant pairs at three randomly selected sites in simulated data with frequencies
of (A) 0.5%, (B) 5%, and (C) 50%. Data were simulated with sample size of 1,000 haplotypes, Ne=10,000,
µ = 1× 10−8, and r = 1× 10−8; using Script 1 from S2 Text. Each panel shows the cumulative fraction of
pairs (y-axis) that have coalesced back in time (x-axis); shown separately for pairs of concordant (blue) and
discordant (red) haplotypes. Areas in gray indicate the branch in the underlying genealogical tree on which
the focal mutation arose, delimited by the maximum and minimum of the coalescence times of concordant
and discordant pairs, respectively.

To maximize the chance of selecting the most recent discordant coalescent events, we

use a heuristic to identify candidates. Specifically, we compute the Hamming distance for

the set of possible pairs, measured by counting allelic mismatches between two sequences

at a fixed interval to both sides relative to a given target site. Here, we scanned up to the

first 5,000 positions on each side (as seen in the data). The set of pairs is sorted from low to

high distance to form a priority queue. We additionally “relax” priority ranks by scanning

each position in the queue, starting at the lowest distance, to remove pairs in which the

same non-carrier haplotype appears more than once in consecutive order. Removed pairs are

then randomly inserted at a lower rank in the queue before continuing at the next position.
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This is done, because the ranking of pairs based on their Hamming distance alone is limited

in that the sequence interval at which pairs are compared is unlikely to be confined to the

local genealogy, but rather may involve sequence variation that derived from peripheral

genealogies. Also, a distinction of haplotypes predicated on carrier and non-carrier status is

biased at target sites that violate model assumptions or in presence of data error. By relaxing

the priority rank, we attempt to reduce the chance to include false negative non-carrier

haplotypes that would otherwise be preferentially selected.

3 Inference of pairwise TMRCA

There are two main sources of information that relate to the time separating two haplotypes

from their MRCA. Mutation events occur independently in each lineage and accumulate along

the sequence as the ancestral haplotype is passed on over generations, and recombination

events break down the length of an ancestral haplotype independently in each lineage in each

generation; see schematic below. Here we describe three coalescent-based “clock” models,

which are constructed in a Bayesian setting for probabilistic inference of the TMRCA between

two lineages, and where time is modeled given information about mutational differences

(mutation clock), recombination distance (recombination clock), or both (joint clock).

Schematic of the genealogical relationship between two random haplotypes. A random pair of haplotypes
(bottom) share a common ancestor in the past (top), from whom they have inherited some piece of DNA. Over
time, the ancestral haplotype sequence (green) has been broken down due to recombination, which occurred
independently in each lineage; indicated by cuts in the plane connecting the two current haplotypes to their
MRCA. A shared haplotype segment is locally defined as the sequence interval both haplotypes retained
since inheritance from the MRCA; indicated by the gray block. Mutation events (red polygons) occurred
independently in either lineage following the ancestral split from the MRCA. By using existing knowledge
about the rate at which mutation and recombination events occur, it is possible to infer the time to the most
recent common ancestor (TMRCA) from sequence information at the shared haplotype segment.
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We define the continuous random variable T for the time of coalescence, where T = t

takes values scaled in units of the diploid effective size of the population, Ne, such that

t =
m

2Ne
(3)

wherem is the number of generations (meioses). We use the neutral coalescent to characterize

the prior probability of coalescence;

π(t) ∝ e−t. (4)

That is, the waiting time until the first coalescent event for two randomly sampled lineages is

approximately exponentially distributed, with rate equal to 1. The choice of prior is expected

to have a weak effect on the inference of TMRCA (and subsequent estimations of allele age),

but depends on the order of mutation and recombination rates. For example, as the mutation

rate gets large, the approach will converge on the true TMRCA irrespective of the prior. In

theory, however, it would be possible to use different distributions, or estimate the prior from

the data.

The setting in which each clock model operates is as follows. For a given pair of

haplotypes, we treat the region they share by descent around a given focal site as known. More

specifically, we assume that the genomic locations of the breakpoints that delimit the shared

haplotype segment are known. We therefore assume that no recombination has occurred

within the shared sequence interval in either of the two lineages considered. While this is

purely theoretical, in S2 Text we propose a solution to locally infer the shared haplotype

segment around a given target site, which employs a hidden Markov model (HMM) to infer

the nearest breakpoints of past recombination events between two haplotype sequences.

3.1 Mutation clock model

Following the assumptions of the infinite-sites model (ISM), mutations occur only once

at each site in the history of the sample, without recurrent or back-mutations [1, 2]. It

follows that the number of pairwise differences observed between two non-recombining

DNA sequences is equal to the number of mutation events that occurred on both lineages

since coalescence in the MRCA. The number of pairwise differences is equivalent to the

number of segregating sites in a sample of two haplotypes. We further assume that all

mutations in the region are observed in the data and that alleles are encoded as 0s and 1s to

distinguish ancestral and derived allelic states, respectively. That is, we know the ancestral

and derived states for the variant at a given locus.

Given the compound mutation parameter θ = 4Neµ, where µ is the known mutation

rate per base pair per generation, mutations accumulate on each lineage independently as a

Poisson process with rate θ/2. We model the number of pairwise differences using the discrete

random variable S, which follows the Poisson distribution with parameter θht, where t is

the population-scaled time parameter and h is the physical length of the shared haplotype
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segment considered, measured as the number of basepairs that make up the segment. We

obtain the number of pairwise differences as the sum of allelic mismatches observed along

the sequence interval. The probability to observe S = s pairwise differences is given by the

probability mass function (PMF) of the Poisson distribution, namely

P (S = s | θht) =
(θht)s

s!
e−θht . (5)

The likelihood function for the time parameter t is proportional to the above, but requires

only those terms that involve t and where constant terms can be dropped, such that

L(t | θ, h, s) ∝ tse−θht (6)

from which we obtain the posterior probability of the time of coalescence as

p(t | θ, h, s) ∝ L(t | θ, h, s) × π(t)

∝ tse−t(θh+1) .
(7)

In the above, the density of the posterior probability is specified up to a missing normalising

constant. The form of Equation (7) implies a Gamma distribution with shape (α) and rate (β)

parameters

α = s+ 1 , β = θh+ 1 (8)

such that the posterior density can now be written as

p(t | θ, h, s) =
(θh+ 1)s+1

Γ(s+ 1)
tse−t(θh+1) . (9)

This result has been obtained previously, for example see [3, Eq. 3.45]. Note that we

previously defined the prior using the exponential distribution with rate equal to 1, but

which is equivalent to using the Gamma distribution with α = 1 and β = 1, due to T ∼ Exp(λ)

being equivalent to T ∼ Gamma(1, λ), such that the prior distribution is conjugate to the

posterior given above.

Variable mutation rates. In applications to genomic data with considerable heterogeneity

of mutation rates, the model can be adjusted to consider variable rates along the genome, if

such data is available. Let ϑ denote the expected value of pairwise differences over the shared

haplotype segment per unit of population-scaled time. We have ϑ = θh if the mutation rate

is uniform (as is assumed above). Otherwise, given a vector of known mutation rates per site,

we compute ϑ = 4Ne
∑h

k=1 µk, where µk is the per generation mutation rate at the kth site in

the focal nucleotide sequence of length h. This is used to calculate the rate of the Gamma

distribution as β = ϑ+ 1.
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Conditional count of pairwise differences. According to ISM assumptions, the number

of pairwise differences observed along a non-recombinant region in two focal haplotype

sequences is equal to the number of mutation events that occurred since their MRCA.

However, this assumption is readily violated in applications to real (non-simulated) data;

for example, due to recurrent or back-mutations, flip errors in phased haplotype data, and

generally in presence of data error when alleles have been missed or falsely identified in the

sequencing or genotyping process. Our model is sensitive to ISM violations, because every

allelic mismatch is counted as a mutation event that separates the two focal haplotypes from

their MRCA.

To account for departures from model assumptions, we exclude sites conditional on the

frequency of the allele whose age we attempt to estimate. Let fk denote the frequency of the

derived allele at a given target site k. Pairwise differences are counted by scanning along the

shared haplotype region of the two sequences considered. At the ith site in the sequence, a

mismatch is counted if fi ≤ fk or excluded otherwise. The number of pairwise differences

is thereby restricted to alleles that conform to ISM assumptions; that is, mutations that

occurred more recently than the focal mutation event at site k.

We apply this restriction to concordant pairs, as both haplotypes carry the focal allele

and are expected to coalesce before the time of the focal mutation event. But it does not

apply to discordant pairs, because we do not know the actual number of haplotypes in

the sample that subtend the lineage at which a pair of carrier and non-carrier haplotypes

join back in time. If we would restrict the count of pairwise differences in discordant

pairs, inferred coalescent times are likely to be underestimated, which may likewise affect

estimates of allele age. However, we expect that overestimation at discordant pairs is less

problematic as it is unlikely that false allelic mismatches are equally replicated among all

pairs considered. Dependent on the age of the focal allele, we may also expect that the shared

haplotype segment at a discordant pair will be relatively short, as there has been more time

for recombination to break down its length, thereby reducing the chance to encounter sites

that violate model assumptions.

3.2 Recombination clock model

The length of a haplotype segment shared between two sequences is delimited by two

recombination events (meiotic crossovers) that occurred independently at some point in the

past in either of the two lineages considered. Relative to a given target site in the genome,

we characterize the surrounding haplotype segment by the two points at which the pairwise

ancestral relationship changes due to recombination. To be precise, we define a breakpoint as

the first site along the sequence that immediately follows the point at which the ancestral

haplotype recombined in either of the two lineages; independently on the left and right-hand

side from the target position. The full length of the focal shared haplotype is thereby enclosed

by the breakpoint interval.
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We use the compound recombination parameter ρ = 4Ner, where r is the recombination

rate per site per generation. In either direction from the target site, the genetic distance to

the first recombination event is exponentially distributed with parameter ρt, where t is the

population-scaled time of coalescence. We define D as a random variable for the distance

along the sequence of a haploid individual. The probability to observe recombination at

distance d is therefore

P (D = d | ρt) = ρt e−ρtd (10)

and the probability that recombination occurred farther beyond along the sequence is

P (D > d | ρt) = e−ρtd . (11)

However, because recombination occurred independently along either of the two sequences

considered, where only the nearest event defines a breakpoint, it follows that

P (D2 = d | ρt) = 2× P (D = d)× P (D > d)

= 2ρt e−2ρtd
(12)

where D2 denotes the breakpoint distance involving two sequences, either of which breaks

first. In cases where no breakpoint is encountered before reaching the end of the chromosome,

it is implied that no recombination occurred along either sequence, such that

P (D2 > d | ρt) = P (D > d)2 = e−2ρtd . (13)

To combine Equations (12) and (13), we can write

fD2(d | ρt, b) = (2ρt)b e−2ρtd (14)

where b = 1 if a breakpoint was found or b = 0 otherwise. The above can be further extended

to consider the breakpoint distances on both sides, dL and dR, such that the full length of the

shared haplotype segment, h, is observed with probability

fH(h) = (2ρt)bL e−2ρtdL × (2ρt)bR e−2ρtdR

= (2ρt)bL+bR e−2ρth
(15)

where bL, bR ∈ {0, 1} indicate the breakpoints on the left and right-hand side from the focal

position. The likelihood function for t can now be obtained from Equation (15) by ignoring

multiplicative constants, such that

L(t | ρ, h, bL, bR) ∝ tbL+bR e−2ρht, (16)
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to obtain the posterior probability of coalescence time as

p(t | ρ, h, bL, bR) ∝ L(t | ρ, h, bL, bR) × π(t)

∝ tbL+bR e−t(2ρh+1) .
(17)

The above has the same form as the posterior probability derived for the mutation clock

model; see Equation (7), Section 3.1. Thus, we again use the Gamma distribution, but with

parameters

α = bL + bR + 1 , β = 2ρh+ 1 (18)

to arrive at the formulation for the posterior density, namely

p(t | ρ, h, bL, bR) =
(2ρh+ 1)bL+bR+1

Γ(bL + bR + 1)
tbL+bR e−t(2ρh+1) . (19)

Variable recombination rates. To consider recombination rate variation in our model, we

can use the information provided by a high-resolution recombination map. Let % denote the

population-scaled genetic length of the focal shared haplotype segment, such that % = ρh if

the recombination rate is constant over the region. The genetic length of a shared haplotype

segment is taken (estimated) from the recombination map as the genetic distance between

the physical positions of its breakpoints, located at sites i and j, for which we use fmap(i, j)

as a function to return the genetic length in units of Morgan (M). Note that map units

are usually specified in centiMorgan (cM), where 1cM = 0.01M. We now can calculate

% = 4Ne × fmap(i, j), such that the rate of the Gamma distribution is β = 2%+ 1.

3.3 Joint clock model

We construct a joint model that considers both mutation and recombination. The same

notation is used and parameters are modeled given the assumptions (and adjustments) as

described for the mutation clock (Section 3.1) and the recombination clock (Section 3.2).

From there, we may immediately arrive at the joint likelihood function in support of the

coalescence time t as the product of the two likelihoods given in Equations (6) and (16);

L(t | θ, ρ, h, s, bL, bR) ∝ ts+bL+bR e−th(θ+2ρ) . (20)

However, it is convenient to replace the term h(θ + 2ρ) with (ϑ+ 2%), where ϑ involves the

(variable) mutation rate as described on Page 7 and % involves the (variable) recombination

rate as described on Page 10. We therefore write

L(t | ϑ, %, s, bL, bR) ∝ ts+bL+bR e−t(ϑ+2%) (21)
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from which we obtain the posterior probability as

p(t | ϑ, %, s, bL, bR) ∝ L(t | ϑ, %, s, bL, bR) × π(t)

∝ ts+bL+bR e−t(ϑ+2%+1) .
(22)

Conveniently, both the mutation and recombination clock models specify the Gamma

distribution for the calculation of the posterior density. We therefore have

α = s+ bL + bR + 1 ,

β = h(θ + 2ρ) + 1 = ϑ+ 2%+ 1
(23)

to calculate the posterior density as

p(t | ϑ, %, s, bL, bR) =
(ϑ+ 2%+ 1)s+bL+bR+1

Γ(s+ bL + bR + 1)
ts+bL+bRe−t(ϑ+2%+1) . (24)

4 Composite posterior estimation of variant age

Our approach to estimate allele age is similar to existing composite likelihood methods that

are applied to solve problems where the full likelihood function is unknown or intractable.

Here, coalescence between a haplotype pair (concordant or discordant) is seen as a lower-

dimensional feature of the local genealogical structure of the sample at a given focal variant.

We combine information from hundreds or thousands of pairs to obtain an estimate of the

time the allele has emerged through mutation.

The posterior density of the time to coalescence for a given pair is defined for the clock

models presented above (Section 3). Each clock model calculates the posterior using the

Gamma distribution with parameters α and β. For simplicity, we express the posterior

density using p(t | λ), where we use λ = {α, β} to connote the parameters determined from

haplotype data under a specific model. The probability of coalescence more recently than

(or at) time t is obtained from the cumulative distribution function (CDF) of the posterior

density;

Λ(t | λ) = P (T ≤ t | λ) =

∫ t

0
p(u | λ) du . (25)

The probability of coalescence subsequent to time t (further back in time) is likewise

Λ(t | λ) = P (T > t | λ) =

∫ ∞
t

p(u | λ) du

= 1− Λ(t | λ) .
(26)

We use the notation {i, j} ← Ck to indicate that a pair was sampled (without replacement)

from the set of possible concordant pairs and, likewise, {i, j} ← Dk for discordant pairs,

where i, j indicate the two haplotypes in a pair. Sampling from either set is done as described
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in Section 2, but where we additionally remove concordant and discordant pairs that appear

to be inconsistent, for which we employ a heuristic algorithm (described in Section 5).

The age of an allele observed at target site k is estimated from the composite posterior

distribution;

Φτ
k

(
t
)
∝

∏
{a,b}←Ck

Λ
(
t | λτk(a, b)

)
×

∏
{c,d}←Dk

Λ
(
t | λτk(c, d)

)
(27)

where τ indicates the coalescent clock model used. The composite posterior can now be

obtained over t ∈ (0,∞), where t is scaled in units of 2Ne.

We record the mode as a point estimate of variant age, but also report the mean and

median of the composite distribution, as well as a 95% confidence interval (non-parametric

calculation based on the CDF of the composite posterior). In practice, when hundreds or

thousands of pairwise TMRCA posteriors are combined (multiplied), the resulting composite

posterior is expected to be over-confident; for example, we expect the mean and median of

the distribution to converge on the mode as the number of concordant and discordant pairs

increases.

Any estimate of variant age is implicitly bounded by the properties of the TMRCA

posteriors from which the composite posterior is formed, which depend on mutational and

recombinational information observed at the haplotype segments shared between the pairs

considered. For very recent relationships, the TMRCA estimate will tend towards zero as

the length, h, of the shared haplotype segment increases; the expected value of TMRCA

follows from the Gamma distribution, given by E[T ] = α/β, where only β involves h (in

all clock models), such that limh→∞ E[T ] = 0 irrespective of the values of Ne or the prior.

Conversely, we expect h to decrease as the TMRCA increases, as recombination had more

time to break down the length of the shared segment. The oldest relationships discernible

from sequence data may therefore be found at segments with a length of a few basepairs,

where the recombination breakpoints occur between immediately neighboring variable sites.

In such cases, due to the lack of information, the TMRCA estimate strongly depends on the

values of Ne and the prior. However, because the composite posterior is formed by combining

the cumulative distributions of TMRCA, coalescent events that occurred more distant in

time, relative to the age of the focal allele, may have only little influence on the shape of the

composite posterior. Nevertheless, the values of Ne and the prior determine the theoretical

upper bound for estimates of the TMRCA and, thus, estimates of the age of the oldest alleles.

5 Heuristic method to reject outlier pairs

There are several sources of error that may adversely affect the estimation of allele age when

using the composite posterior approach described above. For example, a given focal variant

may have been falsely called or missed, the allele may have been lost due to back-mutation,

or some of the shared haplotype segments may have been inferred incorrectly. To reduce the
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impact of such outliers on the estimation process, we perform quality control on the set of

pairs before they are included in the computation of the composite posterior distribution.

Using a simple, heuristic algorithm, a time threshold is ascertained above and below

which concordant and discordant pairs are rejected, respectively; see schematic below.

The number of available concordant pairs is given by nC , where 1 ≤ nC ≤ maxC , and the

number of discordant pairs is given by nD, where 1 ≤ nD ≤ maxD. The mean of the inferred

coalescence time distribution is taken as a point estimate for the TMRCA of each pair,

calculated as E[T ] = α/β, where α, β are determined from haplotype data per pair as defined

for a given clock model. The sets of concordant and discordant pairs are sorted, separately,

from lowest to highest mean TMRCA. For simplicity, we have

c̄1, c̄2, c̄3, . . . , c̄nC and d̄1, d̄2, d̄3, . . . , d̄nD

where c̄i and d̄i connote the mean TMRCA of a given concordant and discordant pair,

respectively. We find a threshold to reject pairs if d̄1 < c̄nC , or we reject none otherwise. The

threshold is placed such that the minimum total number of pairs is rejected. However, we

keep the most recent concordant pair and the oldest discordant pair, so as to ensure that

there is at least one pair in each group.

Schematic of concordant and discordant pair filtering. Available concordant (left) and discordant pairs
(right) are independently sorted by mean TMRCA. A subset of pairs are rejected if distributions overlap. We
use a heuristic algorithm to ascertain a threshold above and below which concordant and discordant pairs are
rejected, respectively. The threshold is determined such that the minimum total number of pairs is rejected.

5.1 Quality score

The proportion of concordant and discordant pairs rejected for a variant may provide a

simple metric to evaluate the quality of its age estimate (resulting from a given clock model).
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We calculate a quality score, QS, as

QS = 1−max

{
rC
nC
,
rD
nD

}
(28)

where rC is the number of rejected concordant pairs and rD the number of rejected discordant

pairs. Values near or equal 1 indicate high quality, and values near 0 indicate low quality;

note that at least one pair is retained in each group, such that 0 < QS ≤ 1.
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