
Modelling Supplement

Introduction to modelling section

Throughout the main paper we made use of mathematical models to identify

features of interest in both behavioural and fMRI data. In this supplement we

describe those models in full.

Before going into details about the models, it is importants to make clear the

intended scope of the models presented here. To do this, we draw the reader’s

attention to the distinction between algorithmic models (the type used in this

paper) and mechanistic models. By an algorithmic model we mean a model

which describes the computations performed by the brain whilst remaining ag-

nostic about the neural mechanisms which underlie these computations. A

mechanistic model or biophysical model might also explain how computations

are performed by neurons in terms of action potentials and synaptic transmis-

sion; we do not extend the models in this paper to the mechanistic level.

The purpose of algorithmic models, such as those used in this study is to make

quantitative predictions about behaviour and brain function by capturing cer-

tain aspects of how human participants perform the task. For example, we hy-

pothesised (in accordance with Bayesian logic) that when participants had access

to two sources of information about the space invader’s trajectory end-point,

they should use precision-weighting (see main paper) to combine the sources.

To test this hypothesis, we constructed a model that used precision-weighting,

and compared it to alternative models which did not use precision-weighting

to see which model most closely approximated human participants’ behaviour.

However, we are not suggesting that the equations described below are neces-

sarily the same ones used by the brain to perform the task. In our model, we
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worked out the posterior mean and standard deviation using equations for the

product of Gaussians, but the brain may arrive at the same posterior distribu-

tion using different calculations - for example by simply multiplying probability

density functions across a spatial map. The question of interest is only whether

the posterior distribution is a weighted combination of the two sources, or not.

Throughout the modelling work in this paper, we designed models to capture

specific aspects of behaviour and/or test specific hypotheses; the models are

not supposed to be a complete account of brain function beyond the specific

questions they were designed to address.

The models

We constructed our model of the participants’ behaviour in several stages.

Firstly and most importantly, the premise of the fMRI experiment was that

participants use precision-weighting to decide how much to rely on each of the

two computational strategies (statistical and dynamic modelling). To test this

hypothesis, we compared predicted endpoints from a precision-weighted model

to other non-precision-weighted models.

Secondly, we give a detailed account of how an equation of motion for each

observed trajectory could be estimated from the observed data points of that

trajectory, on a point-by-point basis, incorporating a prior based on the sta-

tistical model of the end-points’ distribution over many trials. This model

gives behavioural predictions which are precisely equivalent to the precision-

weighted model in the model comparison section, because inferences from each

observed data point are linearly combined. However, constructing the point-by-

point model illustrates how a spatial prior on endpoint (based on the statistical

model) can constrain the fitting of a dynamic model of the whole trajectory.

Finally we describe how participants could learn the statistical distribution of

end-points. This model is important in that it gives an estimate (or at least, an

upper bound) for how well the participants could estimate the end-points’ distri-

bution on each trial. Because we needed to sample statistical distributions with

different levels of precision, occasionally (every 20-40 trials), the ground-truth

statistical end-points’ distribution moved to a new position in space or changed

its variance. Therefore participants could never know the true statistics of the
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environment, but had to learn these from previously observed landing points.

To account for subjects’ incomplete knowledge of the statistical distribution,

we built a Bayesian ideal observer that returned estimates of the current mean

and variance of the underlying statistical distribution of end-points, conditional

on the landing points witnessed by the participant. Although we present this

model last, all references to the statistical model in this section and the main

paper refer to what our Bayesian learner would believe the underlying statisti-

cal distribution to be, rather than to the actual parameters of the generative

distribution which only a clairvoyant subject would know.

All the models described in this supplement were fit using a numerical grid ap-

proach in MATLAB. To our knowledge there are no known analytical solutions

for the particular models proposed, and furthermore, with the small number of

parameters involved, the full posterior could be calculated on a relatively fine

grid in just a few minutes on a laptop computer. However, note that although

the full posterior was discretized this does not mean that the estimates them-

selves are discretized, as they are calculated by taking expectations over the

posterior.

All the model fits reported in this supplement were conducted only on the data

from the fMRI session of the experiment (not the 350 training trials conducted

outside the scanner). The first 20 trials of the fMRI session were practice runs

in which the trajectory variance was set to zero; these trials were excluded from

the model fitting presented here - so all model fits are based on 200 trials from

the fMRI session.

1: Do participants use precision-weighting to com-

bine sources of information?

The premise of the fMRI experiment was that participants should shift between

two computational strategies (use of the statistical model and use of dynamic

trajectory extrapolation) to acheive the same end (i.e. end-point prediction).

We hypothesised that as participants adjusted the weighting given to the two

strategies, the brain areas involved in each computational system should change

their level of activity, upregulating their activity when the computational strat-
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egy they computed was more behaviourally relevant and downregulating activity

when the laternative strategy was more relevant. Using this logic, we sought

to identify brain systems involved in the two computational strategies as those

which upregulated their activity when one of the strategies gave a more precise

prediction.

To justify this approach in the fMRI analysis it is essential to show that partici-

pants do actually adjust how much they rely on each source - historical/statistical

and dynamic/trajectory - based on the relative precision of end-point predictions

afforded by each model. To pre-empt the results, ultimately precision-weighting

did indeed prove to be a good model of how participants actually did the task,

and hence we were able to identify brain areas involved in each strategy by look-

ing for fMRI voxels which varied their activity parametrically with the precision

of each strategy’s prediction.

We performed a formal model comparison to determine whether precision-

weighting or some other strategy was used. Let the landing point of the space

invader be denoted by x (as only the x-coordinate varied from trial to trial.

Then xs is the landing point predicted by the statistical model alone, xd is

the landing point predicted using the dynamic model from the currently ob-

served trajectory, and xr is the participant’s response. We constructed models

in which responses were generated from two Gaussians, the statistical distribu-

tion p(xs) ∼ N(µs, σs), and the distribution of end point estimates given the

current observed trajectory, p(xd) ∼ N(µd, σd). These two distributions were

combined in different ways in different models to give a combined prediction

xsd with mean µsd. To evaulate the goodness of fit of each method for gener-

ating µsd, we found the overall model log liklihood for each human participant

using the assumption that responses xr were generated from µsd (where µsd

was defined based on maximum likelihood values for the free parameters in the

model) with Gaussian noise, such that p(xr|µsd) ∼ N(µsd, k
2). k2, the response

varaince, was fit to the data for each participant. Further details of model

evaulation are given below in the ‘model comparison’ section.

4



Models for combining the two predictions

We hypothesised that participants would approximate the Bayes’-optimal so-

lution: precision-weighting 1. In other words, the two sources of information

would be combined into a single prediction, taking into account their variance so

that the source with the least variance (highest precision) is given more weight.

This is a plausible solution because it makes the best use of the available in-

formation, and also because it would be the natural result of combining two

distributions across a single spatial map - simply by mulitplying the probability

given each of two distributions for each point in space.

However, one alternative way in which the two information sources could be

used would be to combine them without taking into account their relative pre-

cision (e.g. always predict a landing point in half way between the independent

predictions for the two models). This could hypothetically occur, for example, if

participants didn’t have a useful estimate of the precision of each source. If par-

ticipants used this un-weighted strategy, we would expect both computational

brain systems to be equally active on all trials.

A second alternative would be for participants to switch between the two strate-

gies, using only the strategy with the highest precision on any given trial. This

might hypothetically occur if the two predictions were made by separate brain

systems and for some reason could not be combined. This strategy would imply

that the computational systems in the brain should switch between ‘on’ and

‘off’ states rather than varying their activity parametrically with precision.

The models are described below, and also summarised in Figure 3 of the main

manuscript. Parameters subscripted s refer to the statistical model; parameters

subscripted d refer to the dynamic model. Means are labelled µ, standard

deviations σ; the free parameters M , k and b are defined below.

1. Weighted combination.

µsd =
1

σ2
s + (Mσd)2

(
σ2
sµd + (Mσd)

2µs

)
+ b (1)

The predicted end-point µsd is at a position in between the end point predicted

by the historical distribution or observed trajectories alone, where the relative

1Precision is defined as the inverse of variance
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weighting given to each distribution (historical and trajectory) is proportional

to its precision.

2. Non-weighted combination.

µsd = µs +M(µs − µd) + b (2)

The predicted end point was part way in between the estimates from the two

separate predictions; the combined prediction was always a fixed proportion of

the way between the two separate predictions, which did not vary from trial to

trial and did not depend on the relative precisions of the wo separate predictions.

3. Weighted, non-combination.

µsd =

{
µs + b if σ2

s < (Mσd)
2

µd + b otherwise

(3)

The predicted end point was identical to either the prediction based on the sta-

tistical model, or the mean prediction based on the dynamic model, depending

which had the highest precision; predictions were not combined within a trial.

Free parameters and input distributions

Models 1-3 each had three free parameters, M , b and k. The joint maximum

likelihood (MLE) values for the three parameters (given the actual data) were

used; MLE values were selected separately for each model, for each individual.

Mixing factor M . The mixing factor M determined the relative weight given

to the dynamic model vs. the statistical model. The reason for doing this was

that although we modelled how the variance of each prediction (dynamic and

statistical) changed from trial to trial, we did not want to assume that equal

values of σs and σd would be given equal weight; by fitting M we allowed for

participants being relatively better at dynamic than statistical modelling and

vice versa, and by fitting M for each individual we allowed the relative weight

given to each strategy to vary across participants.
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Response bias b. We included a bias constant b, which was fit from the data.

This allowed a for a tendency to consistently respond to the left or right of the

best-fit endpoint and was included on the basis of the informal observation that

some participants did indeed tend to show a linear bias in responses.

Response noise k. We modelled participants’ reponses as generated from the

model prediction µsd (for each model) with Gaussian noise of unknown variance

k2, where k was fit to the data jointly with M and b.

The factors M , b and in the Bayesian model fitting, the response noise k, were all

fit jointly to the data for each individual participant - this process is described

in more detail under ‘model fitting’. The range for M,k and b was chosen by

trial and error to encompass the actual range of MLE values for M,k and b for

our participants (see Supplementary Figure 2b). The units of M,k and b are

arbitrary, except for in the unweighted combination model, where 0 < M < 1 (a

range which arises from the assumption that the combined estimate always lies

between the estimates from the dynamic and statistical models individually).

The units of k and b are correspond to screen pixels; the standard deviation of

the statistical distribution, for comparison, was between 20 and 100 pixels. M is

a scaling factor with a different meaning in the three models. In the unweighted

combination model, 0 < M < 1; in the other models M could theoretically take

any value. For the weighted combination model, M/2 is plotted instead

of M , to match the scale for the other models.

The boundaries of the plot are the boundaries of the state space in which the

model worked. These were chosen by trial and error to encompass the actual

range of MLE values for M,k and b.

Input distributions. Each model used the same input distributions, which

were Gaussian. Let p(xs) be the probability of any given landing point (in

the horizontal x-dimension), given the statistical distribution, and p(xd) be the

probability of a given landing point, given the currently observed trajectory. The

statistical distribution p(xs) ∼ N(µs, σs) was the best estimate of the current

underlying distribution of endpoints, based on the joint maximum likelihood

values for µs, σs from the Bayesian learner described in part 3 of this supplement.
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The distribution of estimates based on the dynamic model xd ∼ N(µd, σd) was

obtained by fitting a quadratic curve to the observed data points, using least-

squares regression; the variance of the trajectory was defined as the variance in

the estimate of the x-coordinate of the regression curve, at the point (in y) at

which the space invader should ‘land’.

Importantly, although for the purposes of model comparison we generated sep-

arate predictions of the end point based on the statistical and dynamic models,

we do not wish to assert that the brain calculates a dynamic model of the cur-

rent trajectory without reference to the statistical model, and then combines

the two predictions at the end of the trial. On the contrary, in the next section

we present a model in which beliefs about the historical distribution influence

the estimation of the trajectory as it unfolds, on a point by point basis. How-

ever, as will be seen in the next section, the predictions of trajectory end point

produced by combining the two models either at the end of the trajectory or

throughout its course, are precisely equivalent, because information is combined

linearly as each new data point is observed. Since we only have behavioural data

for the participants’ estimates of trajectory end-point, not intermediate points

in the trajectory, the two models are equivalent in terms of predicting human

participants’ behaviour.

Model comparison

To determine which model gave the best description of the behaviour of human

participants, we calculated the log likelihood ratio between models (since all

models had the same number of free parameters, there was no need to correct

for model complexity).

For each model, we calculated the probability of human participants’ responses

xr, given that xr ∼ N(µsd, k
2) (where the bold font denotes vector values for xr

and µsd, as these variables take different alues on each trial. Using Bayes’ theo-

rem, we calculated the model likelihood for each model, given the data and some

set of parameters M,k, b, as p(xr ∼ N(µsd, k
2)|xr) ∝ p(xr|xr ∼ N(µsd, k

2).

The maximum likelihood values of M,k, b were determined using a numerical

grid approach: We calculated model likelihood for a range of combinations of

values for {M,k, b} and selected the combination which yielded the maximum
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model likelihood, given that participant’s responses. Following this aproach, the

reported model likelihoods are those for the MLE values of M,k, b.

The range of candidate values for M,k, b used in this numerical fitting procedure

was chosen by trial and error to encompass the MLE values of all parameters

for all participants - MLE values of M,K, b for all subjects are illustrated in

Supplementary Figure S1b.

Results

Over the group of subjects, the model which gave the best fit to participants’

performance was weighted combination model, followed by the non-weighted

combination model (overall logLR for the weighted vs. unweighted model was

105; range in logLR for individual participants was -0.8 to 12.9, mean across

participants was 4.8), then the weighted non-combination model (overall logLR

for the weighted vs. unweighted model was 363; range in logLR for individual

participants was 7.9 to 30.6, mean across participants was 16.5). Log likeli-

hood ratios for the different models are shown in Supplementary Table S1 and

Supplementary Figure S1.

BIC analysis

We used the free parameters M and b to fit aspects of the participants behav-

ior that we did not have strong predictions about a-priori (the M parameter

was included because we were not sure if some participants would give more

weighting to the dynamic of statistical model than might be expected based

on optimal precision-weighting) and observations from inspection of the data

(b was included as many subjects seemed to show a constant bias to respond

to the left- or right- of the optimal endpoint). However, to ensure that the

model fit was not affected by the inclusion of unnecessary free parameters, we

also calculated the Bayesian Information Criterion (a model fit criterion that

penalises models with more free parameters) for versions of each model in which

b and M were independently either free or fixed. In summary, all versions of

the weighted-combination model out-performed the best-fit version of the un-

weighted combination model. Lower BIC values indicate a better model fit.
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First, we compared versions of each model in which the parameters M and b

were either fixed or free. Where b was fixed, its value was set to zero. Where

M was fixed, its value was set to reflect optimal performance: in the weighted

combination model, M was set to 1, the value it would take if participants used

optimal precision weighting; in the non-weighted combination model, M was set

to match the ratio of precisions across the whole experiment. This value was

obtained using the formula for the mean of the product of two Gaussians:

µsd =
σ2
s

σ2
s + σ2

d

µd +
σ2
d

σ2
s + σ2

d

µs (4)

hence MOPT was set to the average weighting obtained for the whole set of 200

trials.

MOPT =
1

n

t∑
1:n

σ2
s(t)

σ2
s(t) + σ2

d(t)
(5)

Where t denotes trial number. For the weighted non-combination model M was

set to 1.

BIC results

Across participants, there was little difference in BIC scores for the different

versions of each model, but all versions of the weighted combination model out-

performed all versions of the unweighted combination model and the weighted

non-combination model (see Supplementary Figure 2).

We took the best (lowest-BIC) version of each model and directly compared

these. The best-fit version of the weighted combination model had no free pa-

rameters, and the best fit version of the unweighted combination model also had

no free parameters. The difference of BICs was strongly in favour of the weighted

combination model (mean+/-SEM difference of BICs=7.9+/-2.1, Range=-18.8-

21.8, BIC>0 in 18/22 participants). Difference-of-BIC scores between 6 and 10

are considered ’strong’ evidence in favour of the lower-BIC model; difference

of BICs > 10 is ’very strong’ evidence, after Raftery (1995): Bayesian model

selection in social research. Sociological Methodology 25:111-163.
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Even when the unweighted combination model was given an unfair advantage y

fixing the free parameters at the mean fitted values for the group (mean +/-SEM

difference of BICs = 6.4+/-1.6, range=-11.6-18.3, BIC>0 in 18/22 participants),

the analysis provided strong evidence that the best-fit version of the weighted

combination model was a better fit to data than the unweighted combination

model. The weighted non-combination model was a much worse fit than the

weighted combination model (mean +/-SEM difference of BICs = 26.8+/12.4,

range=5.8-49.5, BIC>0 in 22/22 participants).

Overall the BIC analysis supports our conclusion that the participants used

a precision-weighting strategy, but provides little evidence for an effect of the

number of free parameters on model fits.

2: How could a spatial prior constrain trajectory

extrapolation?

In the previous section we used behavioural evidence to test whether partici-

pants used precision-weighting to combine two predictions. In that section we

used a simplified model in which the a trajectory of a certain shape (quadratic)

was fit to the observed data points, using least squares regression, without refer-

ence to the statistical distribution of end points over many trials. This resulted

in a probability density function over end-points given the trajectory, which was

combined (in different ways for the different models) with a probability density

function over end-points given the statistical model, to give a combined predic-

tion. In other words, the dynamic and statistical predictions were calculated

separately and combined in the reference frame of the trajectory end-point’s

coordinates.

However, we do not wish to assert that in the brain the two sources of informa-

tion were combined only at the end of the trajectory, or that this combination

necessarily occurs in the spatial reference frame of end-points’ coordinates. It

seems equally possible that the statistical model acts as a prior over possible

trajectories, constraining a process of estimating the current trajectory which

unfolds as each new data point from the trajectrory is observed.

The simple model used in the prvious section was useful in that it was com-
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putationally undemanding and hence could be run many times to determine

the values of free parameters M,k, b. Furthermore, a simple model in which

two predictions over endpoint location (from the trajectory and prior) could

be used to test different hypotheses about how the predictions were combined

(unweighted combination, weighted non-combination, etc).

Conveniently, in terms of endpoint predictions, this simple model is in fact

exactly equivalent to a more complex model in which the statistical model con-

strains the fit of trajectory parameters throughout the trajectory estimation

process, which more closely reflects how we hypothesise the brain might com-

bine the two models (which is described in more detail below). The behavioural

data we collected only told us where participants thought each trajectory would

end, and hence the simple model which combines two separate estimates at

the end of the trajectory gives exactly the same predictions about behaviour

as a model which incorporates the statistical model throught trajectory esti-

mation. Therefore the simplified model was sufficient to test for the use of

precision-weighting. However, in this we section present a more complex model

to illustrate how a spatial prior can constrain the estimation of a trajectory

throughout the observation of that trajectory.

Dynamic integrative model

We hypothesised that people predicted the space invaders’ trajectories by con-

structing a dynamic model of the trajectory which was influenced by prior beliefs

about the trajectory’s eventual end point based on the statistical model. We

define a dynamic model in this case as a model of the velocity and accelera-

tion of the space invader given its position. More generally a dynamic model

could be defined as one which describes how the value of a parameter changes

over time. A dynamic model could be described mathematically using a set of

differential equations.

To model participants’ predictions of the space invader’s trajectory, we con-

structed a dynamic model in which the equation of motion of the space invader

was estimated, and some sets of parameters were considered a priori more likely

because they gave rise to end-points which would be more likely given the sta-

tistical model.
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To simulate the estimation process in the real task, the model was given each

data point from the trajectory sequentially; the model was and updated online

as each data point was observed. Essentially the model, which is described in

detail below, was a quadratic Kalman filter for the curved trajectory of the

space invader.

Generative/‘ground truth’ form of trajectories

The actual trajectory (‘ground truth trajectory’) of the space invader on each

trial was defined by a constant acceleration equation in the horizontal dimension

and a constant velocity in the vertical direction. That is

dy

dt
= p;

d2x

dt2
= q (6)

In fact the velocity in y (the value of p) was fixed across all trials but the

acceleration in x (the value of q) varied from trial to trial, as did the trajectory

start point x0. Solving these equations gives a general solution (putting x in

terms of y) in the form of a quadratic curve

x = ay2 + by + x0 (7)

In fact, b was always zero (in the ground truth trajectory) but we did not

assume participants knew this; we allowed the model to estimate trajectories

with different values of b.

So that participants could not predict the trajectory end-point statically from

the start point, a new pair of values for a and x0 were selected on each trial.

The trajectories were generated such that their end-points followed a Gaussian

distribution (the statistical model which participants estimated) and obviously

this constrained the joint choice of a and x0, but neither parameter individually

could be predicted in advance, or used individually to predict the trajectory’s

end-point.

The data points presented to the participant were generated from the underlying

trajectory by adding Gaussian random noise, in the horizontal dimension, to

each observed data point xi independently. The purpose of including the noise
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was to create perceptual uncertainty (participants were told that their “radar

signal” was noisy).

Note that although in our model we parameterized the trajectory in terms of x

and y rather than x, y and t, there is a unique mapping between each quadratic

curve of the form x = ay2+x0 and each pair of differential equations, given that p

is fixed. In other words, fitting a quadratic curve is simply a re-parameterization

and should not be taken to imply that participants estimate a static curve rather

than a dynamic equation of motion.

Model

We constructed a Bayesian model that estimated the trajectory online, updating

its estimates as each data point from that trajectory was observed. The model

assumed that data points were generated following the equation:

xi = ay2i + byi + x0 + Ei (8)

where Ei is Gaussian noise such that Ei ∼ N(0, σ2) and the subscript i denotes

observed data points within a trajectory.

. . . in other words, the model ‘knew’ that the space invader had a constant

acceleration in x and that noise was Gaussian. The only difference between

the form of trajectory estimated by the model and form of the ‘ground truth’

trajectory was that the model did not know that the coefficient of the linear

term (b) was always zero.

We used a numerical (grid) method to fit the values of the model’s free parame-

ters after each data point was observed. The model operated on a 4-dimensional

state space for a, b, x0, and σ. After each data point was observed, the proba-

bility that each set of parameters a, b, x0, σ were the correct ones was updated

using Bayes’ Rule:

p(a, b, x0, σ|xi) ∝ p(xi|a, b, x0, σ)p(a, b, x0, σ) (9)

. . . where the likelihood p(xi|a, b, x0, σ) was simply calculated by finding the

value of xi that would be expected given the set of values a, b, x0 using the
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equation:

x = ay2i + byi + x0 (10)

. . . and the probability of the observed data point xi given a, b, x0 and σ was then

calculated using the probability density function for a Gaussian distribution.

The prior p(a, b, x0, σ), for data points i > 1, was simply the posterior proba-

bility of those parameter values from the previous data point.

For data point i = 1, the prior over a, b, x0, σ was initiated according to partic-

ipants’ prior beliefs about the statistica; distribution of trajectory end points.

Trajectory end points followed a Gaussian distribution (see Section 3 below for

more details of how this prior was calculated on a trial-to-trial basis). Each

set of parameters for the underlying trajectory (a, b, x0) would predict a cer-

tain endpoint xend|abx0. To calculate a prior over the trajectory parameters

a, b, x0 rather than the spatial parameter xend, the probability of the endpoint

xend|abx0 given the prior was calculated using the probability density funtion for

a Gaussian distribution, and this probability was assigned to the combination

of parameters a, b, x0 as a prior. This was done for each possible combination of

a, b, x0 in turn. Note that the prior was uniform over values for σ because σ was

selected randomly on a trial-to-trial basis and did not depend on the hisotical

distribution of end-points. Hence there could be no prior expectation about its

value at the start of a new trial. The prior over a, b, x0, σ was normalised and

applied in Equation 9 for data point i = 1.

Behaviour of the model

To give a flavour of how the model’s estimate of the trajectory changes with

additional data points, we show the maximum likelihood trajectory at several

points during a trial in Supplementary Figure 3. To illustrate how the statistical

distribution of end points constrains the trajectory estimate, in Supplementary

Figure 3b we show the maximum likelihood trajectory for the same data, but

without the prior over a, b, x0 based on experience of the environmnent’s statis-

tics acquired over many trials.
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Qualitatively, it can be seen that the greatest difference between models using

and ignoring the statistical model actually occurs at the start of the trajectory.

When there is relatively little information from the observed trajectory, the prior

over endpoints based on the statistical model already constrains the possible

trajectory considerably. This is evident from the fact that in the presence of a

prior, trajectories ed in roughly the right position even after a few data points,

and the variance of the estimated end point (blue Gaussian in the figures) is

very much lower (at the start of the trajectory) in the presence of a prior. It is

therefore clearly evident how a spatial prior over a trajectory end point can aid

estimation of the trajectory when only the very early section of the trajectory

is observed.

Equivalence to the model in section 1

We earlier stated without proof that the full model presented here gives a predic-

tion of behaviour which is exactly equivalent to that obtained from the weighted

combination model in section 1, if behaviour is constrained to estimating the end

point of the trajectory (indeed, this is the only measure we have of participants’

trajectory estimates).

This equivalence arises from the multiplicative nature of PDFs. The probability

of a landing point xend after observing datapoint n,

p(xend|x0, x1, x2...xn) (11)

can be written in terms of the probabilities of xend after each data point:

p(xend|x0, x1, x2...xn)

= p(xend|x0, x1, x2...xn−1)p(xend|xn)

=
∏i
i=0 p(xend|xi)

= p(xend|x0)p(xend|x1, x2...xn)

= p(xend|historical prior)p(xend|full trajectory)

(12)
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In the full model (this section) we estimate the PDF over xend (or equivalently,

over a, b, x0, σ) sequentially for each data point, using the PDF at data point

xi−1 as the prior at data point i, and using the statistical model as the prior

at data point xi (or equivalently, as the PDF for an initial ‘data point’ x0).

But as can be seen from equation 12, this is exactly equivalent to fitting a

PDF over xend, or equivalently over a, b, x0, σ, to all the data points x1. . .xp

simulatneously, and then combining it with the prior based on the statistical

model xi - as we did in the simplified model in section 1.

Modelling participants’ estimate of the statistical

distribution of end-points

We hypothesised that participants used a priori knowledge about the statistical

distribution of trajectory endpoints to resolve uncertainty when the observed

trajectory was noisy. However, because the underlying distribution of endpoints

(generative distribution) changed periodically, a model in which participants

used the true generative endpoints’ distribution was not realistic - how could

they know what that distribution was on trials when that distribution had just

changed? Yet the change in the true prior was an essential part of the design,

because we needed to sample distributions with different variances.

To give a more realistic estimate of what participants’ statistical model of the

end-points’ distribution was on any given trial, we created a Bayesian ‘computer

participant’. This ‘computer participant’ was a Baysian ideal observer and hence

its beliefs about the historical distribution on each trial represented the most

accurate estimate an observer could have, given the data points observed.

We did not have direct access to participants’ estimates of the historical distri-

bution, because we only measured their predictions in the presence of both the

historical distribution and the trajectory. Hence, we could not readily measure

whether the Bayesian learner gave a good fit to their actual learning and it

can only be said that the present model gives an upper bound on the accuracy

and precision of the statistical model, which must be a better estimate of par-

ticipants’ real beliefs than simply using the actual (generative/ ground truth)

distribution, which only a clairvoyent subject would know. Note however that
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the precise method of learning is not really relevant to the main argument (that

participants use precision-weighting) and the purpose of this model is only to

improve our estimate of participants’ beliefs in order to test whether precision-

weighting was used.

Bayesian computer participant

Our Bayesian learner operated as follows: at the start of each trial it had a model

(a prior) of the end-points’ distribution from its experience of the environmnet’s

statistics before that trial. When a new end-point was observed, this prior was

updated using Bayes’ theorem. The Bayesian learner learned entirely based on

the true end point on each trial, which was shown to participants at the end of

the trial as feedback. Therefore the Bayesian learner could theoretically operate

without any access to dynamic estimates of the trajectories’ shapes.

Generative model

The Bayesian learner was provided with an accurate model of the shape of

the generative distribution of end-points and the fact that its parameters could

jump to new values; we simply assumed that participants had learned the over-

all structure of the environment during the training session of 1 hour / 350

trials. However, the parameters of the distribution and frequency of jumps were

modelled as free parameters.

Trajectory end points were drawn from a Gaussian distribution with unknown

mean µ(t) and variance σ2(t); these are the underlying values of which µs(t) and

σ2
s(t) are estimators. For clarity we omit the subscript s in this entire

section, and the subscript t now denotes trial number.

Hence:

p(xt = x|µt, σt) ∼ N(µt, σt)) (13)

. . . where x denotes the trajectory endpoint, previously called xend

The mean and variance of this Gaussian could ‘jump’ independently to com-

pletely new values. Following a jump, all values of the jumped parameter (mean
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or variance) were considered equally likely, so that, if Jµ and Jσ are binary vari-

ables representing whether a jump occurred in µ or σ respectively. Jµ and Jσ

follow a binomial distributions with probabilites αmu and αsigma respectively;

these probabilities are free parameters in the model (i.e. they are inferred from

the data).

µt :

{
µt = µt−1 Jµ = 0

µt ∼ U(µmin, µmax) Jµ = 1

(14)

σt :

{
σt = σt−1 Jσ = 0

σt ∼ U(σmin, σmax) Jσ = 1

(15)

The probability of a jump in µ or σ on any given trial had a fixed but unknown

value (αµ, ασ); hence taking together the cases J = 0, 1 (i.e. marginalising over

J) the conditional priors on values of µ and σ at trial t were:

p(µt|µt−1, αµ) = (1− αµ)µt−1 + αµU(µmin, µmax)

p(σt|σt−1, ασ) = (1− ασ)σt−1 + ασU(σmin, σmax)

(16)

Thus there were four independent free parameters which the Bayesian partic-

ipant had to estimate from the data at each time point: the mean (µt) and

variance (σt) of the endpoints’ distribution, and the independent probabilities

(αµ and ασ) that each of these parameters would jump on a given trial. These

parameters were estimated by inverting the generative model (just described)

at each trial using Bayes’ rule with the posterior from trial t-1 acting as the

prior at trial t. The steps were as follows:

First, to calculate the prior at trial t, compute the joint distribution over

{µt, σt, αµ, ασ} based on observed data points x1:t−1

p(µt, µt−1, σt, σt−1, αµ, ασ|x1:t−1) =

p(µt|µt−1, αµ)p(σt|σt−1, ασ)p(µt−1, σt−1, αµ, ασ|x1:t−1)
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(17)

. . . where p(µt−1, σt−1, αµ, ασ|x1:t−1) is the posterior from the previous trial

(hence the estimation is a Markov process).

Next we marginalise over the parameters from the previous trial:

p(µt−1, σt−1, αµ, ασ|x1:t−1) =

∫
dµt−1

∫
dσt−1

[
p(µt, µt−1, σt, σt−1, αµ, ασ|x1:t−1)

]
(18)

. . . and finally incorporate the new data point from trial t

p(µt−1, σt−1, αµ, ασ|x1:t) =
p(xt|µt, σt)p(µt, σt, αµ, ασ|x1:t−1)∫

dµt
∫

dσt
∫

dαµ
∫

dασ p(xt|µt, σt)p(µt, σt, αµ, ασ)
(19)

All integrals were performed using numerical grid integration.

At each trial, t the estimates of µt and σt used in fMRI modelling were the joint

maximum likelihood values of {µt, σt}, calculated after marginalising over αµ

and ασ.
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