Skip to main content
Advertisement

< Back to Article

Neuronal Oscillations Enhance Stimulus Discrimination by Ensuring Action Potential Precision

Figure 2

Current-Injection Evoked Oscillations Maintain Optimal AP Precision In Vitro

(A1) Experimental configuration for examining the impact of oscillations on AP precision in vitro. Under control conditions, mitral cells recorded in vitro received input current injected via the pipette consisting of known Poisson trains convoluted with EPSC-like waveforms and added noise (see Materials and Methods). In the oscillation condition, a sine wave was added to the control stimulus.

(A2) (Top) Single traces showing the voltage recorded under the two conditions in A1. Immediately below are rasters of AP discharge for ten repetitions (different random seeds for noise generation) for a single stimulus under control and oscillatory conditions. (Bottom) PSTH from the raster plots above. Spike trains were smoothed with a Gaussian filter (5 ms).

(A3) Autocorrelation of the PSTHs shown in A2.

(B) AP precision data from experiments as in A2, where AP jitter is normalized (gray line) to the nonoscillation case for the first, second, third, and fourth AP within each oscillation cycle. Dashed line (red) is a linear fit to the oscillation data points. Note that—as with the in vivo data (Figure 1E)—AP jitter accumulates with AP number within an oscillation cycle.

Figure 2

doi: https://doi.org/10.1371/journal.pbio.0040163.g002