Skip to main content
Log in

Double-layer Capacitors with a Higher Energy Density

  • Cover Story
  • Energy Storages
  • Published:
ATZelektronik worldwide Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Beguin, F.; Frackowiak, E.: Supercapacitors. Weinheim: Wiley, 2013

    Book  Google Scholar 

  2. Goodenough, J.B.: Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop for Electrical Energy Storage, 2007, p. 186

    Google Scholar 

  3. Ball, P.: Supercapacitors take charge in Germany. MRS Bulletin. 2012, 37, p. 802 – 3

    Article  Google Scholar 

  4. Lin, R.; Taberna, P-L.; Fantini, S.; Presser, V.; Perez, C.R.; Malbosc, F. et al.: Capacitive Energy Storage from −50 to 100 °C Using an Ionic Liquid Electrolyte. J Phys Chem Lett. 2011, 2(18) p. 2396–401

    Article  Google Scholar 

  5. Padhi, A.K; Nanjundaswamy, K.S.; Goodenough, J.B.: Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 1997, 144(4) p. 1188–94

    Article  Google Scholar 

  6. Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B.: LixCoO2 (0<≤1) — A new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3–4(0) p. 171–4

    Article  Google Scholar 

  7. Armand, M.; Endres, F.: MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 2009, 8(8) p. 621–9

    Article  Google Scholar 

  8. Arulepp, M.; Leis, J.; Latt, M.; Miller, F.; Rumma, K.; Lust, E. et al. The advanced carbide-derived carbon based supercapacitor. Journal of Power Sources. 2006, 162(2) p. 460–6

    Article  Google Scholar 

  9. Izadi-Najafabadi, A.; Yasuda, S.; Kobashi, K.; Yamada, T.; Futaba, D.N.; Hatori, H. et al.: Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density Adv Mater, 2010, 22(35) p. E235-E41

    Google Scholar 

  10. Galinski, M.; Lewandowski, A.; Stepniak, I.: Ionic liquids as electrolytes. Electrochimica Acta. 2006, 51(26) p. 5567–80

    Article  Google Scholar 

  11. Palm, R.; Kurig, H.; Tonurist, K.; Janes, A.; Lust, E.: Is the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate applicable as electrolyte in electrical double layer capacitors? Electrochemistry Communications. 2012, 22(0) p. 203–6

    Article  Google Scholar 

  12. Liu, C.; Li, F.; Ma, L-P.; Cheng, H-M.: Advanced Materials for Energy Storage. Advanced Materials. 2010, 22(8) p. E28-E62

    Article  Google Scholar 

  13. Toupin, M.; Brousse, T.; Bélanger, D.: Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials, 2004, 16(16) p. 3184–90

    Article  Google Scholar 

  14. Boukhalfa, S.; Evanoff, K.; Yushin, G.: Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energ Environ Sci. 2012; 5(5), p. 6872–9

    Article  Google Scholar 

  15. Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B.: Ordered mesoporous α-MoO2 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mat. 2010;9(2), p. 146–51.

    Article  Google Scholar 

  16. Kim, J.W.; Augustyn, V.; Dunn, B.: The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5. Advanced Energy Materials. 2012, 2(1), p. 141–8

    Article  Google Scholar 

  17. Kano, K.; Uno, B.: Surface-redox reaction mechanism of quinones adsorbed on basal-plane pyrolytic graphite electrodes. Analytical Chemistry. 1993, 65(8) p. 1088–93

    Article  Google Scholar 

  18. Roldan, S.; Blanco, C.: Granda M, Menendez R, Santamaria R. Towards a Further Generation of High-Energy Carbon-Based Capacitors by Using Redox-Active Electrolytes. Angewandte Chemie. 2011, 123(7), p. 1737–9

    Article  Google Scholar 

  19. Presser, V.; Zhang, L.; Niu, J.J.; Mc Donough, J.; Perez, C.; Fong, H. et al. Flexible Nano-Felts of Carbide-Derived Carbon with Ultra-High Power Handling Capability. Advanced Energy Materials. 2011, 1(3) p. 423–30

    Article  Google Scholar 

  20. Mc Donough, J.K.; Frolov, AI.; Presser, V.; Niu, J.; Miller, C.H.; Ubieto, T. et al. Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon. 2012;50(9), p. 3298–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presser, V. Double-layer Capacitors with a Higher Energy Density. ATZ Elektron Worldw 8, 4–7 (2013). https://doi.org/10.1365/s38314-013-0167-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s38314-013-0167-9

Keywords

Navigation