Skip to main content
Log in

Pharmacokinetic and Pharmacodynamic Interactions of Ethanol and Propofol in Rabbits

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Propofol is a short-acting intravenous anesthetic which is rapidly metabolized by glucuronidation and ring hydroxylation catalyzed by cytochrome P450. In clinical trials, it was found that patients receiving both ethanol and propofol injection in the surgery awoke significantly earlier than those who were injected propofol alone. To investigate pharmacokinetic and pharmacodynamic interactions of propofol and ethanol, propofol was injected alone and in combination with ethanol to rabbits. Propofol was injected intravenously at a dose rate of 15 mg kg−1. Ethanol was injected intraperitoneally at a dose rate of 2.5 mg kg−1. An LC assay with native fluorescence detection was developed and validated for determining the concentration of propofol in rabbit plasma and the effect of co-injected ethanol on the plasma pharmacokinetics of propofol in rabbits. Co-injection of ethanol decreased the maximum plasma concentration (C max) and area under the plasma concentration–time curve (AUC0–∞) of propofol by 53.28 and 53.42%, respectively, as compared to the control (P < 0.001). Concomitant ethanol also caused a 66.67% increase in plasma clearance (CL) (P < 0.001). These may partially explain the finding that co-injected ethanol reduced the anesthetic effect of propofol by introducing hepatic microsomal drug-metabolizing enzymes activity in rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Andreoni V, Lynne Hughes JM (2009) Vet Anaesth Analg 36:523–531. doi:10.1111/j.1467-2995.2009.00490.x

    Google Scholar 

  2. Bajpai L, Varshney M, Seubert CN, Dennis DM (2004) J Chromatogr B 810:291–296

    CAS  Google Scholar 

  3. Baumgartner CM, Koenighaus H, Ebner JK, Henke J, Schuster T, Erhardt WD (2009) Am J Vet Res 70:1407–1415. doi:10.2460/ajvr.70.11.1407

    Article  CAS  Google Scholar 

  4. Myers GJ, Voorhees C, Eke B, Johnstone R (2009) Perfusion 24:349–355. doi:10.1177/0267659109353819

    Article  Google Scholar 

  5. Wilson C, Canning P, Caravati EM (2010) Clin Toxicol 48:165–170. doi:10.3109/15563651003757954

    Article  CAS  Google Scholar 

  6. Sneyd JR (1994) Anesth Analg 78:1032–1033

    Article  CAS  Google Scholar 

  7. Roschau K, Roschlau WHE (1998) Principles of Medical Pharmacology. Oxford University Press, Oxford 23:290–291

  8. Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ (2001) Anesthesiology 94:110–119

    Article  CAS  Google Scholar 

  9. Guellec L, Lacarelle B, Villard PH, Point H, Catalin J, Durand A (1995) Anesth Analg 81:855–861

    Article  CAS  Google Scholar 

  10. Guitton J, Buronfosse T, Desage M, Flinois JP, Perdrix JP, Brazier JL, Beaune P (1998) Br J Anaesth 80:788–795

    CAS  Google Scholar 

  11. Sneyd JR, Simons PJ, Wright B (1994) Xenobiotica 24:1021–1028. doi:10.3109/00498259409043299

    Article  CAS  Google Scholar 

  12. Mi W, Sakai T, Kudo T, Kudo M, Matsuki A (2003) J Clin Anesth 15:103–107. doi:10.1016/S0952-8180(02)00510-X

    Article  CAS  Google Scholar 

  13. Vuyk J (1997) J Clin Anesth 9:23–26. doi:10.1016/S0952-8180(97)00117-7

    Article  Google Scholar 

  14. Ichinohe T, Aida H, Kaneko Y (2000) Can J Anesth 47:699–704. doi:10.1007/BF03019005

    Article  CAS  Google Scholar 

  15. Schraag S, Mohl U, Bothner U, Georgieff M (1999) J Clin Anesth 11:391–396. doi:10.1016/S0952-8180(99)00076-8

    Article  CAS  Google Scholar 

  16. Virág J, Kádár E, Szentpétery F, Jakab F (1997) Acta Chir Hung 36:386–388

    Google Scholar 

  17. Livraghi T, Grigioni W, Mazziotti A, Sangalli G, Vettori C (1990) Tumori 76:394–397

    CAS  Google Scholar 

  18. Masaki Y, Yamamoto M, Nishimura H, Gomibuchi M, Tanaka S (1997) Kyobu Geka 50:384–388

    CAS  Google Scholar 

  19. Goya N, Koga S, Tomizawa Y, Onitsuka S, Yamaguchi Y, Toma H (2007) Int J Urol 14:760–763. doi:10.1111/j.1442-2042.2007.01799.x

    Article  CAS  Google Scholar 

  20. Hewitt AJ, Walker KR, Kobus SM, Poklewska-Koziell M, Reynolds JN, Brien JF (2010) Neurotoxicol Teratol 32:164–170. doi:10.1016/j.ntt.2009.12.002

    Article  CAS  Google Scholar 

  21. Esfandiari F, Medici V, Wong DH, Jose S, Dolatshahi M, Quinlivan E, Dayal S, Lentz SR, Tsukamoto H, Zhang YH, French SW, Halsted CH (2010) Hepatology 51:932–941. doi:10.1002/hep.23382

    Article  CAS  Google Scholar 

  22. Shepard BD, Tuma DJ, Tuma PL (2010) Alcohol Clin Exp Res 34:280–291. doi:10.1111/j.1530-0277.2009.01091.x

    Article  CAS  Google Scholar 

  23. Wang Y, Millonig G, Nair J, Patsenker E, Stickel F, Mueller S, Bartsch H, Seitz HK (2009) Hepatology 50:453–461. doi:10.1002/hep.22978

    Article  CAS  Google Scholar 

  24. Fassoulaki A, Farinotti R, Servin F, Desmonts JM (1993) Anesth Analg 77:553–556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China (National Natural Science Foundation of China, Beijing, China. Grant No. 30972837).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ning Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, XJ., Shu, Z., Zhang, SH. et al. Pharmacokinetic and Pharmacodynamic Interactions of Ethanol and Propofol in Rabbits. Chroma 72, 981–985 (2010). https://doi.org/10.1365/s10337-010-1757-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1757-9

Keywords

Navigation