Skip to main content
Log in

Application of the Partial Least Square Technique to Identify Critical Variables in the Immunosorbent Manufacturing

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The partial least square technique (PLS) was applied to the monoclonal antibody (Mab) CB.Hep-1 immunosorbent manufacturing to determine the influence of cyanate ester concentration, ligand concentration and target ligand density on Mab coupling efficiency, elution capacity, Hepatitis B surface antigen purity and ligand leakage (output variables). Results demonstrated that cyanate ester concentration, ligand concentration and density do not have an influence on output variables in assessed ranges. Conversely, the eluted antigen purity was significantly influenced by cyanate ester concentration and ligand concentration. In conclusion, the PLS application allows for the identification of critical variables and improvement of established chromatographic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chase HA (1984) Chem Eng Sci 39:1099–1125. doi:10.1016/0009-2509(84)85074-5

    Article  CAS  Google Scholar 

  2. Wilcheck M, Miron T (1999) React Funct Polym 41:263–268. doi:10.1016/S1381-5148(99)00042-5

    Article  Google Scholar 

  3. Hardy E, Martínez E, Diago D, Díaz R, González D, Herrera L (2000) J Biotechnol 77:157–167. doi:10.1016/S0168-1656(99)00201-1

    Article  CAS  Google Scholar 

  4. Gómez L, Hernández R, Ibarra N, Valdés R, Campos Y, Tamayo A et al (2002) J Biochem Biophys Methods 52:151–159. doi:10.1016/S0165-022X(02)00013-1

    Article  Google Scholar 

  5. Hernández R, Plana L, Gómez L, Expósito N, Valdés J, Páez R et al (2005) J Chromatogr B Analyt Technol Biomed Life Sci 816:1–6. doi:10.1016/j.jchromb.2004.04.020

    Article  Google Scholar 

  6. Gabrielsson J, Lindberg NO, Lundstedt T (2002) J Chemom 16:141–160. doi:10.1002/cem.697

    Article  CAS  Google Scholar 

  7. Chiang LH, Leardi R, Pell RJ, Seasholtz MB (2006) Chemom Intell Lab Syst 81:109–119. doi:10.1016/j.chemolab.2005.10.006

    Article  CAS  Google Scholar 

  8. Lundstedt-Enkela K, Gabrielsson J, Olsman H, Seifert E, Pettersen J, Lek PM et al (2006) Chemom Intell Lab Syst 84:201–207. doi:10.1016/j.chemolab.2006.05.013

    Article  Google Scholar 

  9. Fontirrochi G, Dueñas M, Fernández de Cossío ME, Fuentes P, Pérez M, Mainet D et al (1993) Biotechnol Apl 10:24–30

    CAS  Google Scholar 

  10. Valdés R, Díaz T, Nieto A, García C, Pérez M, García J et al (1995) Biotecnol Apl 12:115–126

    Google Scholar 

  11. Paez R, Agraz A, Herrera L (1992) Acta Biotechnol 13:117–122. doi:10.1002/abio.370130207

    Article  Google Scholar 

  12. Agraz A, Quiñones Y, Expósito N, Breña F, Madruga J, Pentón E et al (1993) Biotechnol Bioeng 42:1238–1244. doi:10.1002/bit.260421014

    Article  CAS  Google Scholar 

  13. Lowry OH, Rosenbrough NJ, Farr AL, Randal RJ (1951) J Biol Chem 193:256–275

    Google Scholar 

  14. Valdés R, Leyva JL, González E, Mainet D, Costa L (1994) Biotecnol Apl 11:219–224

    Google Scholar 

  15. Axen R, Porath J, Ernback S (1967) Nature 214:1302–1304. doi:10.1038/2141302a0

    Article  CAS  Google Scholar 

  16. Kohn J, Wilchek M (1978) Biochem Biophys Res Commun 84:7–14. doi:10.1016/0006-291X(78)90255-3

    Article  CAS  Google Scholar 

  17. Laemmli UK (1970) Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  18. March SC, Parikh I, Cuatrecasas P (1974) Anal Biochem 60:149–152. doi:10.1016/0003-2697(74)90139-0

    Article  CAS  Google Scholar 

  19. Subramanian A, Van Cott KE, Milbrath DS, Velander WH (1994) J Chromatogr A 672:11–24. doi:10.1016/0021-9673(94)80590-3

    Article  CAS  Google Scholar 

  20. Wold S, Sjöström M, Eriksson L (2001) Chemom Intell Lab Syst 58:109–130. doi:10.1016/S0169-7439(01)00155-1

    Article  CAS  Google Scholar 

  21. Nauman EB (2002) Elementary reactions. In: Chemical reactor design, optimization and scale-up. McGraw Hill, USA, pp 4–10

  22. Kohn W, Wilcheck M (1982) Enzyme Microb Technol 4:161–163. doi:10.1016/0141-0229(82)90109-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors kindly thank the Center for Genetic Engineering and Biotechnology for the financial support of this work. The first author gratefully acknowledges Relma Tavares de Oliveira, for the inspiration for writing this paper. The team of authors is grateful to Rebecca Deming Ballentine for her assistance in polishing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eutimio G. Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, E.G., Valdés, R., Montero, J.A. et al. Application of the Partial Least Square Technique to Identify Critical Variables in the Immunosorbent Manufacturing. Chroma 68, 375–380 (2008). https://doi.org/10.1365/s10337-008-0689-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0689-0

Keywords

Navigation