Skip to main content

Advertisement

Log in

An Invitation to Lorentzian Geometry

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

The intention of this article is to give a flavour of some global problems in General Relativity. We cover a variety of topics, some of them related to the fundamental concept of Cauchy hypersurfaces:

  1. (1)

    structure of globally hyperbolic spacetimes,

  2. (2)

    the relativistic initial value problem,

  3. (3)

    constant mean curvature surfaces,

  4. (4)

    singularity theorems,

  5. (5)

    cosmic censorship and Penrose inequality,

  6. (6)

    spinors and holonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Typically, an a priori stronger hypothesis that causality is used to define global hyperbolicity, namely, strong causality. In [24] it has been shown that both notions agree. For simplicity, we renounce giving details here and simply use the more recent definition of global hyperbolicity instead.

  2. Time machines are in contradiction to the unspoken fundamental assumption of the free will of the experimentalist taken by the vast majority of physicists, in the sense that any observer, in contrast to physical nature around him, is assumed to be able to take decisions like preparing a spin-up or a spin-down state in a manner which is in principle unpredictable for others, compare the discussion of Bell’s inequality and the EPR paradox. Note that without that assumption, time machines do not contradict any other principles of physics—with the possible exception of predictability of nature, cf. the article of Krasnikov [70] as well as its critical reception in [77].

  3. He considered a different, but equivalent, notion of global hyperbolicity, based on the compactness of the space of causal curves connecting each two points, but this is not specially relevant at this point.

  4. Because of the gradient condition |∇u|<f(u).

  5. Typically, this data must satisfy: (i) (Σ,h,σ) is asymptotically flat, (ii) T satisfies the dominant property, and the equations for T constitute a quasilinear, diagonal, second order hyperbolic system, (iii) the fall-off of the initial value of T on Σ is fast enough for the h-distance, and h is assumed to be complete.

  6. More precisely, the latter means that the spacetime is strongly asymptotically predictable, see [114]. Recall that WCCC cannot be regarded as a particular case of SCCC.

References

  1. Alías, L.J., Romero, A., Sánchez, M.: Spacelike hypersurfaces of constant mean curvature in certain spacetimes. Nonlinear Anal. 30, 655–661 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Alías, L.J., Chaves, R.M.B., Mira, P.: Björling problem for maximal surfaces in Lorentz-Minkowski space. Math. Proc. Camb. Philos. Soc. 134(2), 289–316 (2003)

    MATH  Google Scholar 

  3. Alías, L.J., Impera, D., Rigoli, M.: Hypersurfaces of constant higher order mean curvature in warped products. Trans. Am. Math. Soc. 365(2), 591–621 (2013)

    MATH  Google Scholar 

  4. Alías, L.J., Montiel, S.: Uniqueness of spacelike hypersurfaces with constant mean curvature in generalized Robertson-Walker spacetimes. In: Differential Geometry, Valencia, 2001, pp. 59–69. World Sci., River Edge (2002)

    Google Scholar 

  5. Andersson, L., Barbot, T., Benedetti, R., Bonsante, F., Goldman, W.M., Labourie, F., Scannell, K.P., Schlenker, J.-M.: Notes on a paper of Mess [Lorentz spacetimes of constant curvature, Geom. Dedicata 126, 3–45 (2007)]. Geom. Dedicata 126, 47–70 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Andersson, L., Howard, R.: Comparison and rigidity theorems in semi-Riemannian geometry. Commun. Anal. Geom. 6, 819–877 (1998)

    MATH  MathSciNet  Google Scholar 

  7. Bär, C.: Real Killing spinors and holonomy. Commun. Math. Phys. 154(3), 509–521 (1993)

    MATH  Google Scholar 

  8. Bär, C., Moroianu, A., Gauduchon, P.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249, 545–580 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Bartnik, R.: Existence of maximal surfaces in asymptotically flat spacetimes. Commun. Math. Phys. 94, 155–175 (1984)

    MATH  MathSciNet  Google Scholar 

  10. Bartnik, R., Chrusciel, P.T., Murchadha, N.O.: On maximal surfaces in asymptotically flat space-times. Commun. Math. Phys. 130, 95–109 (1990)

    MATH  Google Scholar 

  11. Bartnik, R., Isenberg, J.: The constraint equations. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 1–38. Birkhäuser, Berlin (2004)

    Google Scholar 

  12. Baum, H.: Riemannian manifolds with imaginary Killing spinors. Ann. Glob. Anal. Geom. 7(2), 141–154 (1989)

    MATH  MathSciNet  Google Scholar 

  13. Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Glob. Anal. Geom. 7(3), 205–226 (1989)

    MATH  MathSciNet  Google Scholar 

  14. Baum, H., Müller, O.: Codazzi spinors and globally hyperbolic Lorentzian manifolds with special holonomy. Math. Z. 258, 185–211 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Baum, H.: Eichfeldtheorie. Springer, Berlin (2009)

    MATH  Google Scholar 

  16. Baum, H., Leistner T.: in preparation

  17. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Monographs Textbooks Pure Appl. Math., vol. 202. Marcel Dekker, New York (1996)

    MATH  Google Scholar 

  18. Benavides Navarro, J.J., Minguzzi, E.: Global hyperbolicity is stable in the interval topology. J. Math. Phys. 52, 112504 (2011)

    MathSciNet  Google Scholar 

  19. Benci, V., Fortunato, D., Giannoni, F.: On the existence of multiple geodesics in static space–times. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8, 79–102 (1991)

    MATH  MathSciNet  Google Scholar 

  20. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (1992)

    MATH  Google Scholar 

  21. Bernal, A.N., Sánchez, M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003)

    MATH  Google Scholar 

  22. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    MATH  Google Scholar 

  23. Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Bernal, A.N., Sánchez, M.: Globally hyperbolic spacetimes can be defined as “causal” instead of “strongly causal”. Class. Quantum Gravity 24, 745–750 (2007)

    MATH  Google Scholar 

  25. Bohle, C.: Killing spinors on Lorentzian manifolds. J. Geom. Phys. 45, 285–308 (2003)

    MATH  MathSciNet  Google Scholar 

  26. Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)

    MATH  MathSciNet  Google Scholar 

  27. Bray, H.: Black holes, geometric flows, and the penrose inequality in general relativity. Not. Am. Math. Soc. 49, 1372–1381 (2003)

    MathSciNet  Google Scholar 

  28. Candela, A.M., Sánchez, M.: Geodesics in semi-Riemannian manifolds: geometric properties and variational tools. In: Recent Developments in Pseudo-Riemannian Geometry. ESI Lect. Math. Phys. pp. 359–418. Eur. Math. Soc., Zurich (2008)

    Google Scholar 

  29. Caponio, E., Germinario, A.V., Sánchez, M.: Convex regions of stationary spacetimes and Randers spaces. Applications to lensing and asymptotic flatness (2011). arXiv:1112.3892

  30. Caponio, E., Javaloyes, M.A., Masiello, A.: On the energy functional on Finsler manifolds and applications to stationary spacetimes. Math. Ann. 351, 365–392 (2011)

    MATH  MathSciNet  Google Scholar 

  31. Caponio, E., Javaloyes, M.A., Sánchez, M.: On the interplay between Lorentzian causality and Finsler metrics of Randers type. Rev. Mat. Iberoam. 27, 919–952 (2011)

    MATH  MathSciNet  Google Scholar 

  32. Carrasco, A., Mars, M.: A counterexample to a recent version of the Penrose conjecture. Class. Quantum Gravity 27(6), 062001 (2010)

    MathSciNet  Google Scholar 

  33. Chaves, R.M.B., Dussan, M.P., Magid, M.: Björling problem for timelike surfaces in the Lorentz-Minkowski space. J. Math. Anal. Appl. 377(2), 481–494 (2011)

    MATH  MathSciNet  Google Scholar 

  34. Cheng, S.-Y., Yau, S.-T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. 104, 407–419 (1976)

    MATH  MathSciNet  Google Scholar 

  35. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in General Relativity. Commun. Math. Phys. 14, 329–335 (1969)

    MATH  MathSciNet  Google Scholar 

  36. Christodoulou, D., Klainermann, S.: On the Global Nonlinear Stability of Minkowski Space. Princeton University Press, Princeton (1995)

    Google Scholar 

  37. Chruściel, P., Galloway, G.J., Pollack, D.: Mathematical general relativity: a sampler. Bull. Am. Math. Soc. (N.S.) 47(4), 567–638 (2010)

    MATH  Google Scholar 

  38. Chruściel, P.T., Grant, J., Minguzzi, E.: On differentiability of volume time functions. Preprint (2013)

  39. Chrusciel, P.T., Isenberg, J., Pollack, D.: Initial data engineering. Commun. Math. Phys. 257, 29–42 (2005)

    MATH  MathSciNet  Google Scholar 

  40. Chruściel, P.T., Shatah, J.: Global existence of solutions of the Yang-Mills equations on globally hyperbolic four dimensional Lorentzian manifolds. Asian J. Math. 1, 530–548 (1997)

    MATH  MathSciNet  Google Scholar 

  41. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    MATH  MathSciNet  Google Scholar 

  42. Corvino, J., Schoen, R.: On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 73, 185–207 (2006)

    MATH  MathSciNet  Google Scholar 

  43. Dafermos, M.: Spherically symmetric spacetimes with a trapped surface. Class. Quantum Gravity 22, 2221–2232 (2005)

    MATH  MathSciNet  Google Scholar 

  44. Ecker, K.: On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetimes. J. Aust. Math. Soc. A 55(1), 41–59 (1993)

    MATH  MathSciNet  Google Scholar 

  45. Ecker, K., Huisken, G.: Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Commun. Math. Phys. 135(3), 595–613 (1991)

    MATH  MathSciNet  Google Scholar 

  46. Ehlers, J., Kundt, W.: Exact solutions of the gravitational field equation. In: Witten, L. (ed.) Gravitation, an Introduction to Current Research, pp. 49–101. Wiley, New York (1962)

    Google Scholar 

  47. Eichmair, M., Huang, L.-H., Lee, D.A., Schoen, R.: The spacetime positive mass theorem in dimensions less than eight. arXiv:1110.2087

  48. Ellis, G.F.R., Hawking, S.W.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, vol. 1. Cambridge University Press, London (1973)

    MATH  Google Scholar 

  49. Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Philos. Soc. 152(2), 303–339 (2012)

    MATH  MathSciNet  Google Scholar 

  50. Flores, J.L., Herrera, J., Sanchez, M.: On the final definition of the causal boundary and its relation with the conformal boundary. Adv. Theor. Math. Phys. 15(4), 991–1058 (2011)

    MATH  MathSciNet  Google Scholar 

  51. Flores, J.L., Herrera, J., Sánchez, M.: Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds. Mem. Am. Math. Soc. 226, 1064 (2013)

    Google Scholar 

  52. Frauendiener, J.: Conformal infinity. Living Rev. 1 (2004). http://relativity.livingreviews.org/Articles/lrr-2004-1/index.html

  53. Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97, 117–146 (1980)

    MATH  MathSciNet  Google Scholar 

  54. Galaev, A.: Metrics that realize all Lorentzian holonomy algebras. Int. J. Geom. Methods Mod. Phys. 3(5–6), 1025–1045 (2006)

    MATH  MathSciNet  Google Scholar 

  55. Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Class. Quantum Gravity 27(15), 152002 (2010)

    MathSciNet  Google Scholar 

  56. García-Parrado, A., Sánchez, M.: Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples. Class. Quantum Gravity 22, 4589–4619 (2005)

    MATH  Google Scholar 

  57. García-Parrado, A., Senovilla, J.M.M.: Causal relationship: a new tool for the causal characterization of Lorentzian manifolds. Class. Quantum Gravity 20, 625–664 (2003)

    MATH  Google Scholar 

  58. García-Río, E., Kupeli, D.N., Vázquez-Lorenzo, R.: Osserman Manifolds in Semi-Riemannian Geometry. Lecture Notes in Mathematics, vol. 1777. Springer, Berlin (2002)

    MATH  Google Scholar 

  59. Gerhardt, C.: H-surfaces in Lorentzian manifolds. Commun. Math. Phys. 89, 523–553 (1983)

    MATH  MathSciNet  Google Scholar 

  60. Gerhardt, C.: Hypersurfaces of prescribed mean curvature in Lorentzian manifolds. Math. Z. 235(1), 83–97 (2000)

    MATH  MathSciNet  Google Scholar 

  61. Gerhardt, C.: On the CMC foliation of future ends of a spacetime. Pac. J. Math. 226, 297–308 (2006)

    MATH  MathSciNet  Google Scholar 

  62. Gerhardt, C.: Curvature Problems. Series in Geometry and Topology, vol. 39. International Press, Somerville (2006)

    MATH  Google Scholar 

  63. Geroch, R.: What is a singularity in general relativity? Ann. Phys. 48, 526–540 (1968)

    MATH  Google Scholar 

  64. Geroch, R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970)

    MATH  MathSciNet  Google Scholar 

  65. Helfer, A.: Conjugate points on spacelike geodesics or pseudo-selfadjoint Morse-Sturm-Liouville systems. Pac. J. Math. 164(2), 321–350 (1994)

    MATH  MathSciNet  Google Scholar 

  66. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97–111 (1998)

    MATH  MathSciNet  Google Scholar 

  67. Huisken, G., Ilmanen, T.: The Inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–437 (2001)

    MATH  MathSciNet  Google Scholar 

  68. Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint equations. Commun. Math. Phys. 231, 529–568 (2002)

    MATH  MathSciNet  Google Scholar 

  69. Kovner, I.: Fermat principle in gravitational fields. Astrophys. J. 351, 114–120 (1990)

    Google Scholar 

  70. Krasnikov, S.: No time machines in classical general relativity. Class. Quantum Gravity 19, 4109 (2002)

    MATH  MathSciNet  Google Scholar 

  71. Lawson, H.B., Michelson, M.L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  72. Lee, J.M., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17 (1987)

  73. Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differ. Geom. 76, 423–484 (2007)

    MATH  MathSciNet  Google Scholar 

  74. Leitner, F.: Imaginary Killing spinors in Lorentzian geometry. J. Math. Phys. 44, 4795 (2003)

    MATH  MathSciNet  Google Scholar 

  75. Lerner, D.E.: The space of Lorentz metrics. Commun. Math. Phys. 32, 19–38 (1973)

    MATH  MathSciNet  Google Scholar 

  76. Lichnerowicz, A.: L’integration des équations de la gravitation relativiste et le problème des n corps. J. Math. Pures Appl. 23, 37–63 (1944)

    MATH  MathSciNet  Google Scholar 

  77. Manchak, J.B.: No no-go: a remark on time machines. Preprint (2012)

  78. Mars, M.: Present status of the Penrose inequality. Class. Quantum Gravity 26(19), 193001 (2009)

    MathSciNet  Google Scholar 

  79. Marsden, J.E., Tipler, F.J.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Phys. Rep. 66(3), 109–139 (1980)

    MathSciNet  Google Scholar 

  80. Marsden, J.E.: On completeness of homogeneous pseudo-Riemannian manifolds. Indiana Univ. Math. J. 22, 1065–1066 (1972/1973)

    MathSciNet  Google Scholar 

  81. Masiello, A.: Variational Methods in Lorentzian Geometry. Longman Sc. Tech, Harlow (1994)

    MATH  Google Scholar 

  82. Minguzzi, E., Sánchez, M.: Connecting solutions of the Lorentz force equation do exist. Commun. Math. Phys. 264(2), 349–370 (2006)

    MATH  Google Scholar 

  83. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Recent Developments in Pseudo-Riemannian Geometry. ESI Lect. Math. Phys., pp. 299–358. Eur. Math. Soc., Zürich (2008)

    Google Scholar 

  84. Montiel, S.: An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature. Indiana Univ. Math. J. 37(4), 909–917 (1988)

    MATH  MathSciNet  Google Scholar 

  85. Müller, O.: The Cauchy problem of Lorentzian minimal surfaces in globally hyperbolic manifolds. Ann. Glob. Anal. Geom. 32(1), 67–85 (2007)

    MATH  Google Scholar 

  86. Müller, O.: Asymptotic flexibility of globally hyperbolic manifolds. C. R. Math. Acad. Sci. Paris 350(7–8), 421–423 (2012)

    MATH  MathSciNet  Google Scholar 

  87. Müller, O.: Special temporal functions on globally hyperbolic manifolds. Lett. Math. Phys. 103(3), 285–297 (2013)

    MATH  MathSciNet  Google Scholar 

  88. Müller, O., Sánchez, M.: Lorentzian manifolds isometrically embeddable in L N. Trans. Am. Math. Soc. 363(10), 5367–5379 (2011)

    MATH  Google Scholar 

  89. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  90. Parker, T., Taubes, C.H.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84(2), 223–238 (1982)

    MATH  MathSciNet  Google Scholar 

  91. Penrose, R.: Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    MATH  MathSciNet  Google Scholar 

  92. Perlick, V.: On Fermat’s principle in general relativity. I. The general case. Class. Quantum Gravity 7, 1319–1331 (1990)

    MATH  MathSciNet  Google Scholar 

  93. Perlick, V.: On Fermat’s principle in general relativity. II. The conformally stationary case. Class. Quantum Gravity 7, 1849–1867 (1990)

    MATH  MathSciNet  Google Scholar 

  94. Perlick, V.: Gravitational lensing from a spacetime perspective. Living Rev. Relat. 7 (2004). http://relativity.livingreviews.org/Articles/lrr-2004-9/

  95. Piccione, P., Tausk, D.V.: On the distribution of conjugate points along semi-Riemannian geodesics. Commun. Anal. Geom. 11, 33–48 (2003)

    MATH  MathSciNet  Google Scholar 

  96. Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174, 822 (2005)

    MathSciNet  Google Scholar 

  97. Reula, O.A.: Existence Theorem for solutions of Witten’s equation and non-negativity of the total mass. J. Math. Phys. 23(5) (1982)

  98. Romero, A., Rubio, R.M., Salamanca, J.J.: Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes. Class. Quantum Gravity 30(11), 115007 (2013)

    MathSciNet  Google Scholar 

  99. Romero, A., Sánchez, M.: New properties and examples of incomplete Lorentzian tori. J. Math. Phys. 35, 1992–1997 (1994)

    MATH  MathSciNet  Google Scholar 

  100. Sachs, R.K., Wu, H.: General relativity and cosmology. Bull. Am. Math. Soc. 83, 1101–1164 (1977)

    MATH  MathSciNet  Google Scholar 

  101. Sánchez, M.: Causal hierarchy of spacetimes, temporal functions and smoothness of Geroch’s splitting. A revision. Mat. Contemp. 29, 127–155 (2005)

    MATH  MathSciNet  Google Scholar 

  102. Sánchez, M.: Cauchy hypersurfaces and global Lorentzian geometry. In: Proc. XIV Fall Workshop Geom. Phys., Bilbao Spain, September 14-16 2005. Publ. RSME, vol. 20, pp. 2–22 (2006)

    Google Scholar 

  103. Sánchez, M.: A note on stability and Cauchy time functions. Preprint. arXiv:1304.5797

  104. Schmidt, B.G.: A new definition of singular points in general relativity. Gen. Relativ. Gravit. 1(3), 269–280 (1970/1971)

    Google Scholar 

  105. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem I. Commun. Math. Phys. 65, 45–76 (1979)

    MATH  MathSciNet  Google Scholar 

  106. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 1457–1459 (1981)

    Google Scholar 

  107. Senovilla, J.M.M.: Trapped surfaces, horizons and exact solutions in higher dimensions. Class. Quantum Gravity 19, L113 (2002)

    MATH  MathSciNet  Google Scholar 

  108. Senovilla, J.M.M.: New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity. Phys. Rev. Lett. 64(19), 2219–2221 (1990)

    MATH  MathSciNet  Google Scholar 

  109. Senovilla, J.M.M.: A singularity theorem based on spatial averages. In: Dadhich, N., Joshi, P., Roy, P. (eds.) The Raychaudhuri Equation and Its Role in Modern Cosmology, vol. 69, pp. 31–47 (2007)

    Google Scholar 

  110. Stumbles, S.M.: Hypersurfaces of constant mean extrinsic curvature. Ann. Phys. 133(1), 28–56 (1981)

    MATH  MathSciNet  Google Scholar 

  111. Szabados, L.: Quasi-local energy-momentum and angular momentum in GR: a review article. Living Rev. 4 (2004). http://relativity.livingreviews.org/Articles/lrr-2004-4/index.html

  112. Treibergs, A.E.: Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent. Math. 66(1), 39–56 (1982)

    MATH  MathSciNet  Google Scholar 

  113. Uhlenbeck, K.: A Morse theory for geodesics on a Lorentz manifold. Topology 14, 69–90 (1975)

    MATH  MathSciNet  Google Scholar 

  114. Wald, R.M.: General Relativity. Univ. Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  115. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    MATH  MathSciNet  Google Scholar 

  116. Yip, P.F.: A strictly-positive mass theorem. Commun. Math. Phys. 108(4), 653–665 (1987)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second-named author is partially supported by the Grants MTM2010–18099 (MICINN) and P09-FQM-4496 (J. Andalucía) with FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, O., Sánchez, M. An Invitation to Lorentzian Geometry. Jahresber. Dtsch. Math. Ver. 115, 153–183 (2014). https://doi.org/10.1365/s13291-013-0076-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-013-0076-0

Keywords

Mathematics Subject Classification

Navigation