Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Correspondence of chaos in binocular aberration dynamics

Not Accessible

Your library or personal account may give you access

Abstract

We used a binocular Shack–Hartmann sensor to measure the aberration dynamics of six participants at a rate of 21 Hz. Chaos theory analysis was used to determine the Lyapunov exponent for the time evolution of the rms wavefront error, accommodation, and each individual Zernike coefficient up to and including the fifth radial order. In all cases there was no statistically significant difference between the Lyapunov exponents between the two eyes, suggesting that the level of chaos is common between them. The mean Lyapunov exponent averaged across both eyes of all participants was 0.42±0.14  μm/s for the rms wavefront error, 0.37±0.06  D/s for accommodation, and 0.32±0.09  μm/s averaged across Zernike coefficients. We found no statistically significant correlation per se between the eyes, except for horizontal coma. The correlation may be masked by the impact of differing tear film dynamics. Understanding the nature of aberration dynamics has utility in optimizing the performance of adaptive optics systems for the human eye.

© 2013 Optical Society of America

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved