Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-dimensional confocal Raman temperature characterization of electrokinetically pumped microchannels

Abstract

A novel method for noninvasive, three-dimensional temperature characterization in microfluidic devices is presented. A specially designed confocal microscope was built and used to measure water temperature by sensing the Raman spectrum variations of the liquid. This is achieved by splitting the spectrum in the isosbestic point and detecting it with two photon counters. The difference between the signals of each detector divided by their sum shows a linear dependence with temperature. A fiber-coupled laser beam is used to pump the sample with 25 mW of optical power at 405 nm. This allows a 0.8 K temperature precision and a 9 μm axial resolution using a 1 s integration time. These features make temperature profiling in all dimensions possible, in contrast with previous methods, where the information present in the height of the channel is lost and the whole spectrum needs to be recovered before computing the sample temperature. Using this technique, different geometries of polydimethylsiloxane microchannels sealed with a 150 μm thick glass coverslip were studied, showing that heat flow through the glass is the dominating dissipation mechanism and defines the maximum temperature in the channel. The results show good agreement with previous work found in the literature.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-dimensional materials analysis by confocal Raman microspectroscopy

Lothar Kador, Tobias Schittkowski, Markus Bauer, and Yuwei Fan
Appl. Opt. 40(28) 4965-4970 (2001)

Thermal hydraulic performance of a microchannel heat sink for cooling a high-power diode laser bar

Di-Hai Wu, Chung-En Zah, and Xingsheng Liu
Appl. Opt. 58(8) 1966-1977 (2019)

Hyperspectral spatially offset Raman spectroscopy in a microfluidic channel

Moritz Matthiae and Anders Kristensen
Opt. Express 27(3) 3782-3790 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.