Skip to main content
Log in

Hot rolling mill roll microstructure interpretation: A computational thermodynamics study

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

The microstructure of the interface of a high chromium cast iron/ductile cast iron composite hot rolling mill roll has been interpreted with the help of Fe-Cr-Si-C laboratory alloys and thermodynamic calculations of their solidification paths. It has been shown that the mill roll presents two limiting microstructures: the ductile cast iron core and the white cast iron shell. While the core is heavily contaminated with chromium, originating from the partial dissolution of the shell during core pouring, the shell shows a typical high chromium white cast iron micro-structure, since it remains solid during processing. The high chromium contents in the core originate a typical “mottled” cast iron microstructure, combining nodular graphite and ledeburite. The region between the two limiting microstructures is called interface. As the distance from the core toward the shell increases in the interface, the content of chromium increases but that of silicon decreases. The resulting microstructural gradient shows ledeburitic M3C, hexagonal-section M3C, duplex M3C/M7C3 carbides, and M7C3 carbide, which could be well correlated with the calculated solidification paths of the laboratory samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hashimoto, S. Otomo, K. Yoshida, K. Kimura, R. Kurashi, T. Kawakami, and T. Koura: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1202–10.

    Article  Google Scholar 

  2. O. Kato, H. Yamamoto, M. Ataka, and K. Nakajima: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1216–20.

    Article  Google Scholar 

  3. M. Shimizu, O. Shitamura, S. Matsuo, T. Kamata, and Y. Kondo: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1244–49.

    Article  Google Scholar 

  4. Y. Sano, T. Hattori, and M. Haga: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1194–1201.

    Article  Google Scholar 

  5. K.H. Zum Gahr: Microstructure and Wear of Materials, Elsevier, Amsterdam, 1987.

    Google Scholar 

  6. G. Laird II and G.L.F. Powell: Metall. Trans. A, 1993, vol. 24A, pp. 981–88.

    Article  ADS  Google Scholar 

  7. K. Bungardt, E. Kunze, and E. Horn: Arch. Eisenhüttenwes., 1958, vol. 29, pp. 193–203.

    Article  Google Scholar 

  8. N.R. Griffing, W.D. Forgeng, and D. Healy: Trans. AIME, 1962, vol. 224, pp. 148–53.

    Google Scholar 

  9. R.S. Jackson: J. Iron Steel Inst., 1970, vol. 2, pp. 163–67.

    Google Scholar 

  10. J.-O. Anderson: Metall. Trans. A, 1988, vol. 19A, pp. 627–36.

    Article  ADS  Google Scholar 

  11. P.J. Spencer, M. Kowalsky, K. Granat, H. Dzeniek, and E. Lugscheider: Z. Metallkd., 1994, vol. 85, pp. 359–64.

    Google Scholar 

  12. C.G. Schön and A. Sinatora: Calphad, 1999, vol. 22, pp. 437–48.

    Article  Google Scholar 

  13. B. Sundman, B. Jansson, and J.-O. Andersson: Calphad, 1985, vol. 9, pp. 153–90.

    Article  Google Scholar 

  14. A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317–425.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, C.G., Sinatora, A. Hot rolling mill roll microstructure interpretation: A computational thermodynamics study. JPE 22, 470–474 (2001). https://doi.org/10.1361/105497101770333045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497101770333045

Keywords

Navigation