Skip to main content
Log in

Antimicrobial properties of diamond-like carbon-silver-platinum nanocomposite thin films

  • Nanomaterials
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Silver and platinum were incorporated within diamond-like carbon (DLC) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films reveals that these films self-assemble into particulate nanocomposite structures that possess a high fraction of sp 3-hybridized carbon atoms. Nanoindentation testing of DLC-silver nanocomposite films demonstrates that these films possess hardness and Young’s modulus values of approximately 35 and 350 GPa, respectively. DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus and Pseudomonas aeruginosa bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson, Diamond-like Amorphous Carbon, Mater. Sci. Eng. R, Vol 37 (No. 4–6), 2002, p 129–281

    Article  Google Scholar 

  2. M. Allen, B. Myer, and N. Rushton, In Vitro and In Vivo Investigations into the Biocompatibility of Diamond-Like Carbon (DLC) Coatings for Orthopedic Applications, J. Biomed. Mater. Res., Vol 58 (No. 3), 2001, p 319–328

    Article  CAS  Google Scholar 

  3. S. Linder, W. Pinkowski, and M. Aepfelbacher, Adhesion, Cytoskeletal Architecture and Activation Status of Primary Human Macrophages on a Diamond-Like Carbon Coated Surface, Biomaterials, Vol 23 (No. 3), 2002, p 767–773

    Article  CAS  Google Scholar 

  4. E. Liu, B. Blanpain, J.P. Celis, J.R. Roos, G. Alvarez Verven, and T. Priem, Tribological Behaviour and Internal Stress of Diamond Coating Deposited with a Stationary DC Plasma Jet, Surf. Coat. Technol., Vol 80 (No. 3), 1996, p 264–270

    Article  CAS  Google Scholar 

  5. L.A. Thomson, F.C. Law, N. Rushton, and J. Franks, Biocompatibility of Diamond-Like Carbon Coating, Biomaterials, Vol 12 (No. 1), 1991, p 37–40

    Article  CAS  Google Scholar 

  6. M. Allen, B. Myer, and N. Rushton, In Vitro and In Vivo Investigations into the Biocompatibility of Diamond-Like Carbon (DLC) Coatings for Orthopedic Applications, J. Biomed. Mater. Res., Vol 58 (No. 3), 2001, p 319–328

    Article  CAS  Google Scholar 

  7. M.J. Ignatius, N. Sawhney, A. Gupta, B.M. Thibadeau, O.R. Monteiro, and I.G. Brown, Bioactive Surface Coatings for Nanoscale Instruments: Effects on CNS Neurons, J. Biomed. Mater. Res., Vol 40 (No. 2), 1998, p 264–274

    Article  CAS  Google Scholar 

  8. M.B. Guseva, V.G. Babaev, V.V. Khvostov, Z.K. Valioullova, A.Y. Bregadze, A.N. Obraztsov, and A.E. Alexenko, Deposition of Thin Highly Dispersive Diamond Films by Laser-Ablation, Diam. Relat. Mater., Vol 3 (No. 4–6), 1994, p 328–331

    Article  CAS  Google Scholar 

  9. N. Kikuchi, Y. Ohsawa, and I. Suzuki, Diamond Synthesis by CO2-Laser Irradiation, Diam. Relat. Mater., Vol 2 (No. 2–4), 1993, p 190–196

    Article  CAS  Google Scholar 

  10. A.A. Voevodin, S.J.P. Laube, S.D. Walck, J.S. Solomon, M.S. Donley, and J.S. Zabinski, Pulsed-Laser Deposition of Diamond-Like Amorphous-Carbon Films from Graphite and Polycarbonate Targets, J. Appl. Phys., Vol 78 (No. 6), 1995, p 4123–4130

    Article  CAS  Google Scholar 

  11. A.A. Voevodin and M.S. Donley, Preparation of Amorphous Diamond-Like Carbon by Pulsed Laser Deposition: A Critical Review, Surf. Coat. Technol., Vol 82 (No. 3), 1996, p 199–213

    Article  CAS  Google Scholar 

  12. A.A. Voevodin, M.S. Donley, J.S. Zabinski, and J.E. Bultman, Mechanical and Tribological Properties of Diamond-Like Carbon Coatings Prepared by Pulsed Laser Deposition, Surf. Coat. Technol., Vol 77 (No. 1–3), 1995, p 534–539

    Article  Google Scholar 

  13. S. Lopatin, S.J. Pennycook, J. Narayan, and G. Duscher, Z-Contrast Imaging of Dislocation Cores at the GaAs/Si Interface, Appl. Phys Lett., Vol 81 (No. 15), 2002, p 2728–2730

    Article  CAS  Google Scholar 

  14. J. Bruley, D.B. Williams, J.J. Cuomo, and D.P. Pappas, Quantitative Near-Edge Structure-Analysis of Diamond-Like Carbon in the Electron-Microscope Using a 2-Window Method, J. Microscopy (Oxford), Vol 180 (No. 1), 1995, p 22–32

    Article  CAS  Google Scholar 

  15. E.H. A. Dekempeneer, R. Jacobs, J. Smeets, J. Meneve, L. Eersels, B. Blanpain, J. Roos, and D.J. Oostra, RF Plasma-Assisted Chemical Vapor-Deposition of Diamond-Like Carbon- Physical and Mechanical-Properties, Thin Solid Films, Vol 217 (No. 1–2), 1992, p 56–61

    Article  CAS  Google Scholar 

  16. K. Bewilogua, D. Dietrich, G. Holzhuter, and C. Weissmantel, Structure of Amorphous-Carbon Films, Phys. Status Solidi A, Vol 71 (No. 1), 1982, p 57–59

    Article  Google Scholar 

  17. D.G. McCulloch, D.R. McKenzie, and C.M. Goringe, Ab Initio Simulations of the Structure of Amorphous Carbon, Phys. Rev. B, Vol 61 (No. 3), 2000, p 2349–2355

    Article  CAS  Google Scholar 

  18. Y. Lifshitz, Hydrogen-Free Amorphous Carbon Films: Correlation Between Growth Conditions and Properties, Diam. Relat. Mater., Vol 5 (No. 3–5), 1996, p 388–400

    Article  CAS  Google Scholar 

  19. Y. Lifshitz, G.D. Lempert, E. Grossman, I. Avigal, C. Uzansaguy, R. Kalish, J. Kulik, D. Marton, and J.W. Rabalais, Growth Mechanisms of DLC Films from C+ Ions- Experimental Studies, Diam. Relat. Mater., Vol 4 (No. 4), 1995, p 318–323

    Article  CAS  Google Scholar 

  20. B.K. Tay and P. Zhang, On the Properties of Nanocomposite Amorphous Carbon Films Prepared by Off-Plane Double Bend Filtered Cathodic Vacuum Arc, Thin Solid Films, Vol 420, 2002, p 177–184

    Article  Google Scholar 

  21. V.V. Uglova, V.M. Anishchik, Y. Pauleau, A.K. Kuleshov, F. Thièry, J. Pelletier, S.N. Dub, and D.P. Rusalsky, Relations Between Deposition Conditions, Microstructure and Mechanical Properties of Amorphous Carbon-Metal Films, Vacuum, Vol 70 (No. 2–3), 2003, p 181–185

    Article  CAS  Google Scholar 

  22. Y. Pauleau and F. Thièry, Deposition and Characterization of Nanostructured Metal/Carbon Composite Films, Surf. Coat. Technol., Vol 180–181, 2004, p 313–322

    Article  Google Scholar 

  23. D. Sheeja, B.K. Tay, J.Y. Sze, L.J. Yu, and S.P. Lau, A Comparative Study Between Pure and Films Prepared by FCVA Technique Biasing Al-Containing Amorphous Carbon with High Substrate Pulse, Diamond Relat. Mater., Vol 12 (No. 10–11), 2003, p 2032–2036

    Article  CAS  Google Scholar 

  24. H. Rusli, S. F. Yoon, Q. F. Huang, J. Ahn, Q. Zhang, H. Yang, Y. S. Wu, E. J. Teo, T. Osipowicz, and F. Watt, Metal-Containing Amorphous Carbon Film Development Using Electron Cyclotron Resonance CVD, Diamond Relat. Mater., Vol 10 (No. 2), 2001, p 132–138

    Article  CAS  Google Scholar 

  25. Rusli, S.F. Yoon, H. Yang, J. Ahn, Q.F. Huang, Q. Zhang, Y.P. Guo, C.Y. Yang, E.J. Yeo, A.T.S. Wee, A.C. H. Huan, and F. Watt, Tungsten-Carbon Thin Films Deposited Using Screen Grid Technique in an Electron Cyclotron Resonance Chemical Vapour Deposition System, Surf. Coat. Technol., Vol 123 (No. 2–3), 1999, p 134–139

    Google Scholar 

  26. C. Strondl, N.M. Carvalho, J.T.M. De Hosson, and G.J. van der Kolk, Investigation on the Formation of Tungsten Carbide in Tungsten-Containing Diamond-Like Carbon Coatings, Surf. Coat. Technol., Vol 162 (No. 2–3), 2003, p 288–293

    Article  CAS  Google Scholar 

  27. G. Printzen, Relevance, Pathogenicity and Virulence of Microorganisms in Implant Related Infections, Injury-Inter. J. Care Injured, Vol 27 (No. 3), 1996, p 9–15

    Google Scholar 

  28. Z.U. Isiklar, G.C. Landon, and H.S. Tullos, Amputation after Failed Total Knee Arthroplasty, Clin. Orthop. Relat. Res., Vol 299, 1994, p 173–178

    Google Scholar 

  29. K. Merritt, A. Gaind, and J.M. Anderson, Detection of Bacterial Adherence on Biomedical Polymers, J. Biomed. Mater. Res., Vol 39 (No. 3), 1998, p 415–422

    Article  CAS  Google Scholar 

  30. C.C. Chang and K. Merritt, Microbial Adherence on Poly(Methyl Methacrylate) Surfaces, J. Biomed. Mater. Res., Vol 26 (No. 2) 1992, p 197–207

    Article  CAS  Google Scholar 

  31. K.K. Jefferson, What Drives Bacteria to Produce a Biofilm?, FEMS Microbiol. Lett., Vol 236 (No. 2), 2004, p 163–173.

    Article  CAS  Google Scholar 

  32. R.O. Darouiche, Anti-Infective Efficacy of Silver-Coated Medical Prostheses, Clin. Infect. Dis., Vol 29 (No. 6), 1999, p 1371–1377

    Article  CAS  Google Scholar 

  33. D.J. Stickler, Biomaterials to Prevent Nosocomial Infections: Is Silver the Gold Standard?, Curr. Opin. Infect. Dis., Vol 13 (No. 4), 2000, p 389–393

    Article  CAS  Google Scholar 

  34. K.S. Oh, S.H. Park, and Y.K. Jeong, Antimicrobial Effects of Ag Doped Hydroxyapatite Synthesized from Co-Precipitation Route, Key Eng. Mater., Vol 264–268 (No. 1–3), 2004, p 2111–2114

    Article  Google Scholar 

  35. D.P. Dowling, A.J. Betts, C. Pope, M.L. McConnell, R. Eloy, and M.N. Arnaud, Anti-Bacterial Silver Coatings Exhibiting Enhanced Activity Through the Addition of Platinum, Surf. Coat. Technol., Vol 163, 2003, p 637–640

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, R.J., Abernathy, H., Riester, L. et al. Antimicrobial properties of diamond-like carbon-silver-platinum nanocomposite thin films. J. of Materi Eng and Perform 14, 435–440 (2005). https://doi.org/10.1361/105994905X56197

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994905X56197

Keywords

Navigation