Skip to main content
Log in

Kinetics of strain aging in bake hardening ultra low carbon steel—a comparison with low carbon steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The kinetics of the static strain aging process have been analyzed in a vacuum-degassed ultra low carbon bake hardenable (ULC BH) steel with a total carbon content of 20 wt.ppm through measurement of the strength properties. The influence of prestrain and free interstitial carbon content has been studied. The kinetic results were compared with those of a BH low carbon (LC) steel. In the derivation of the time exponent and the activation energy, only the first stage of aging was considered. It was observed that, at all prestrain levels and matrix solute carbon contents, the initial aging process in the ULC steel obeyed the t 2/3 kinetic law and the kinetics were not influenced by the changes in dislocation structure due to prestrain and the dissolved carbon content. In comparison, the aging process and the kinetics in the LC steel were found to be significantly influenced by the amount of prestrain. The presence of carbide particles in LC steels can modify the aging kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Leslie: The Physical Metallurgy of Steels, McGraw-Hill, New York, NY, 1982, p. 88.

    Google Scholar 

  2. W. Pitsch and K. Lücke: Arch. Eisenhüttenwes., 1956, vol. 1, p. 45.

    Google Scholar 

  3. D.V. Wilson and B. Russell: Acta Metall., 1960, vol. 8, pp. 36–45.

    Article  CAS  Google Scholar 

  4. P. Elsen and H.P. Hougardy: Steel Res., 1993, vol. 64, pp. 431–36.

    CAS  Google Scholar 

  5. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc., 1949, vol. A62, pp. 49–62.

    Google Scholar 

  6. S. Harper: Phys. Rev., 1951, vol. 83, pp. 709–12.

    Article  CAS  Google Scholar 

  7. J.D. Baird: Iron and Steel, 1963, vol. 7, pp. 368–74.

    Google Scholar 

  8. W.C. Leslie: Acta Metall., 1961, vol. 9, pp. 1004–22.

    Article  CAS  Google Scholar 

  9. R.H. Doremus: Trans. AIME, 1960, vol. 218, pp. 596–605.

    CAS  Google Scholar 

  10. S.I. Neife, E. Pink, and H.P. Stüwe: Scripta Metall. Mater., 1994, vol. 30, pp. 361–66.

    Article  CAS  Google Scholar 

  11. V.T.L. Buono, M.S. Andrade, and B.M. Gonzalez: Metall. Trans. A, 1998, vol. 29A, pp. 1415–23.

    Article  CAS  Google Scholar 

  12. R. Bullough and R.C. Newman: Proc. R. Soc., 1959, vol. A249, pp. 427–40.

    CAS  Google Scholar 

  13. A.K. De, S. Vandeputte, and B.C. De Cooman: Scripta Mater., 1999, vol. 41, pp. 831–37.

    Article  CAS  Google Scholar 

  14. S. Hartley: Acta Metall., 1966, vol. 14, pp. 1237–46.

    Article  CAS  Google Scholar 

  15. A.V. Snick, K. Lips, S. Vandeputte, BC De Cooman, and J. Dilewijns: in Proc. on Processing and Properties, W. Bleck, ed., Aachen, Germany, 1998, Mordern LC and ULC Sheet Metals for Cold Forming, vol. 2, pp. 413–24.

  16. I.G. Ritchie and Z. Pan: 33rd MWSP Conf. Proc., ISS, Warrendale, PA, 1992, vol. 29, pp. 15–25.

    Google Scholar 

  17. A.K. De, K. De Blauwe, S. Vandeputte, and B.C. De Cooman: J. Alloys Compounds, 2000, vol. 310 (1–2), pp. 405–10.

    Article  CAS  Google Scholar 

  18. J.D. Baird: Iron and Steel, 1963, vol. 8, pp. 400–05.

    Google Scholar 

  19. E. Kozeschnik and B. Buchmayr: Steel Res., 1997, vol. 68 (5), pp. 224–30.

    CAS  Google Scholar 

  20. T. Obara, K. Sakata, M. Nishida, and T. Irie: Kawasaki Steel Technical Report, 1985, vol. 12, p.25.

    Google Scholar 

  21. C. Wert: Phys. Rev., 1950, vol. 79, pp. 601–05.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, A.K., De Cooman, B.C. & Vandeputte, S. Kinetics of strain aging in bake hardening ultra low carbon steel—a comparison with low carbon steel. J. of Materi Eng and Perform 10, 567–575 (2001). https://doi.org/10.1361/105994901770344719

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994901770344719

Keywords

Navigation