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1. Methodology and Motivation

We were presented with the challenge of estimating causal effects using simulated data that

was intended to roughly mirror “preliminary data extracted from the National Study of

Learning Mindsets.” In particular, we were asked to address three research goals:

1. Was the mindset intervention effective in improving student achievement?.

2. Researchers hypothesize that the effect of the intervention is moderated by school level

achievement (X2) and pre-existing mindset norms (X1). In particular there are two

competing hypotheses about how X2 moderates the effect of the intervention: Either

it is largest in middle-achieving schools (a “Goldilocks effect”) or is decreasing in

school-level achievement.

3. Researchers also collected other covariates and are interested in exploring their possible

role in moderating treatment effects.

We discuss our approach to these three research goals as well as a summary of our results.

1.1 Assumptions

Given that the simulated dataset was based on data from a large-scale randomized ex-

periment, the Learning Mindsets study, we were hopeful that the simulated data satisfied

ignorability for the research questions posed. To be conservative, we assumed that ignor-

ability was conditional on the full set of observed covariates—that is, Y (0), Y (1) ⊥ Z | X

(Rubin 1979). In the post-workshop analyses we examined the sensitivity of our estimates

to violations of ignorability and were satisfied that it was not an unreasonable assumption.

Given this ignorability assumption, any analysis would require appropriate conditioning

on covariates to achieve unbiased estimates of E[Y (0) | X] and E[Y (1) | X]. We had two

strategies for avoiding strong parametric assumptions. First, we checked that each variable
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Treatment effect heterogeneity with BART

we controlled for satisfied balance and overlap. This helped ensure that empirical counter-

factuals existed for all observations. Second, we used a very flexible modeling strategy for

estimating these conditional expectations.

At different stages in our analysis, we made several different types of modeling choices

with respect to the grouped data structure. Each has its own set of assumptions. When we

represented this structure through school-specific fixed effects, α, our ignorability assump-

tion generalized to Y (0), Y (1) ⊥ Z | X,α. When we instead modeled school-level variation

as varying intercepts—or “random effects”—we imposed the additional assumption that

the random effects were uncorrelated with the (school-level aggregates of) covariates and

treatment indicator. This would be violated if an unobserved school-level covariate was

predictive of both school-level treatment rates and mean response.

We had no way of knowing whether SUTVA was satisfied. We performed analyses under

the assumption that it was satisfied.

1.2 Choice of BART as the foundation of our approach

Without information about the true parametric form of the response surface, we opted for a

method that flexibly fit the response surface. Recent evidence demonstrates the advantages

of machine learning algorithms as an approach to causal effect estimation (for instance, Hill

2011; Dorie et al. 2018). Within this class of estimators, we prefer automated algorithms

that have been integrated into Bayesian inferential frameworks. This combination allows

for uncertainty quantification and is more flexible in accommodating several other compli-

cations such as grouped data structures and missing outcome data. One such modeling

strategy, based on Bayesian Additive Regression Trees (BART; Chipman et al. 2007, 2010),

already has a proven track record of superior performance in causal inference settings (Hill

2011; Hill et al. 2011; Hill and Su 2013; Dorie et al. 2016; Kern et al. 2016; Wendling et al.

2018). Here we briefly introduce BART and its uses for causal inference.

Bayesian Additive Regression Trees. The BART algorithm consists of a sum-of-trees

model and a regularization prior. The prior avoids overfit by specifying the number of

trees, the probability distribution for the size of each tree, the shrinkage applied to the

fit from each tree, and the degrees of freedom for the prior distribution for the residual

standard error. Interested readers can find more information on the model, prior, and

fitting algorithms in Chipman et al. (2007, 2010). The key point is that BART can be used

to flexibly fit even highly nonlinear response surfaces, which is consistent with our goal to

fit E[Y (1) | X]− E[Y (0) | X] without making undue parametric assumptions.

BART for causal inference. It is straightforward to use BART to estimate the average

treatment effect (ATE). First fit BART to the observed data (Y given Z and X). Next
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make predictions for two datasets (Hill 2011). X is kept intact for both, however, in one

all treatment values are set to 0, and in the other they are all set to 1. This allows BART

to draw from the posterior distribution for E[Y (1) | X] and E[Y (0) | X] for each person,

implying we can also obtain draws from E[Y (1)−Y (0) | X] for each person. These posterior

distributions for individual-level treatment effects can then be aggregated to obtain posterior

distributions of average treatment effects either for the full dataset or any subset thereof.

Adding the propensity score as a covariate. While the approach described in Hill

(2011) has good properties across a variety of settings (Hill et al. 2011; Hill and Su 2013;

Dorie et al. 2016; Kern et al. 2016; Wendling et al. 2018), recent work (Hahn et al. 2017) re-

veals situations where the performance of BART can be compromised due to regularization-

induced confounding. While this is less of a concern in settings like the present one, in which

covariates are outnumbered by observations and data are well-behaved, in general the “best

practice” recommendation for using BART for causal inference is to guard against this po-

tential source of bias. One approach to doing so, suggested by Hahn et al. (2017), is to

include an estimate of the propensity score as a covariate. We used BART to fit a propensity

score model (as described below) and included the estimate in response models.

Cross-validation to choose hyperparameters. BART tends to perform well using

the default prior specification described by Chipman et al. (2007), but performance can

sometimes be improved by choosing hyperparameters via cross-validation (Chipman et al.

2010). This is particularly important when using BART for non-continuous outcomes, a

case for which off-the-shelf BART is currently not optimized (Dorie et al. 2016).1

Overlap. BART has certain advantages over propensity score approaches to evaluating

overlap, which can be misled by covariates that are strongly predictive of the treatment

but not are not strongly associated with the outcome. Therefore, in addition to checking

overlap marginally for each covariate and for the propensity score, we also checked using a

BART-specific approach as in Hill and Su (2013); results described in Section 3.

Causal inference with group structured data. The data have a multilevel structure.

Treatment was assigned at the individual level, but students are grouped within schools. A

primary goal was to decide whether and how to model this structure. During the workshop,

we presented results from a fixed-effects specification. Ultimately, our preferred model for

the response surface is the random-effects specification. However, robustness checks (below)

reveal that this choice made little difference in overall results.2

1. Murray (2017) has derived models for a wide class of generalized linear model extensions to BART that

are optimized for binary, count, and multiple category outcomes however these are not yet available in

shareable software.

2. We used fixed effects for the propensity score model, since random effects with a binary response are not

yet implemented in dbarts, or elsewhere in R, to our knowledge.
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Overview of preferred modeling strategy. Our preferred modeling strategy proceeds

as follows: 1) Fit a propensity score model with BART using all covariates and including

school ID as a fixed effect, using cross-validation to choose hyperparameters (75 trees with

k of 8). 2) Fit a response model on observed covariates and the estimated propensity score

with BART including schools as random effects, using cross-validation to choose hyperpa-

rameters (350 trees with k = 1.5). For both fits we run 4 chains with 1000 iterations each

(in addition to 500 burn-in iterations). Given the symmetry of the posterior distributions

of interest, we report credible intervals based on normal approximations.

2. Results from analyses run for the workshop

During the workshop we discussed assumptions and addressed the questions posed.

2.1 Checking assumptions

Our first step was to check balance and overlap of covariates between treatment groups. We

checked each covariate individually as well as the propensity score and found overwhelming

support for both balance and overlap (see Figures A1 and A2 in Supplemental Appendix).

We revisit overlap in Section 3 with more sophisticated diagnostics.

2.2 Goal 1: Intervention effectiveness

We addressed this question by using BART in the manner described above with a focus

on estimating an average causal effect and associated uncertainty interval. The posterior

distribution of this effect is reasonably symmetric, so we reported only an effect estimate

(posterior mean) of 0.248 with a 95% credible interval of (0.227, 0.270). By this measure,

we deem the intervention to be effective on average. Choice of grouping adjustment makes

little difference to the estimate of the overall ATE leading to differences of less then .003 in

posterior means and interval endpoints.

2.3 Goal 2: Moderation by specific covariates

We had several related strategies for exploring moderation. These capitalize on the fact

that BART provides a posterior distribution of the causal effect for each observation. It is

thus straightforward to examine the relationship between the expected effect for each person

(represented by the mean of the corresponding posterior distribution) and any covariate of

interest. We can do the same with respect to school-level effects and covariates. We present

a few of the myriad methods for portraying these relationships.

The role of urbanicity. Before discussing our results for Goal 2, we address an important

discovery made in our pursuit of that goal. While exploring the role of X1 (“fixed mindset”)
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andX2 (“achievement”) as moderators we created scatterplots of individual treatment effect

estimates (posterior means) versus X1 and X2. These plots revealed a group of schools

with average treatment effects substantially lower than the rest, as displayed in the left-most

plots of Figure 1.3 Fitting a regression tree for the individual effects given all covariates

(using the rpart package in R) easily identified the five-category, school-level covariate XC,

or “urbanicity”, as the culprit. Color-coding by urbanicity levels displays this visually.

Posterior distributions of the treatment effect for each urbanicity level, displayed in the

right-most plot of this figure, would have alerted us to this phenomenon as well. Of course,

researchers do not typically check for moderation with respect to all covariates (and in fact

are often discouraged from doing so out of fear of data snooping). Therefore, in the absence

of a specific hypothesis about urbanicity, the substantial differences in treatment effects

across its levels might have gone undetected with a more traditional test of moderation.
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Figure 1: The role of urbanicity

Moderation by X1 and X2 Given the distinctive role that urbanicity plays in predicting

school-level treatment effects, we opted to subtract the variation due to urbanicity from

the school-level treatment effects. This was accomplished by centering the posterior mean

individual ATEs on the average individual ATE within urbanicity category before computing

school-level averages. In practice, this choice would be made in conjunction with the applied

researcher, since it subtly changes the nature of the research question. In essence, we are

now examining whether treatment effects vary across schools with the same urbanicity

rating that differ in their average level of fixed mindset or their achievement.

For the workshop, we presented plots of the relationship between the school-level treat-

ment effects and each of these potential moderators as lowess curves with uncertainty bounds

as in Figure 2. These provide weak evidence of moderation by X1 with a trend towards

smaller effects for schools that had higher levels of fixed mindset. Similarly there appears

3. Actually first we created lowess plots of these relationships. These masked this phenomenon! This is a

testimony to the power of plotting your data!
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to be some evidence for a positive association between school achievement and treatment

effect. However, we weren’t satisfied with using the default uncertainty bounds provided by

ggplot for lowess. Our post-workshop analyses provide more clarity regarding these trends

and associated uncertainty, but do not alter our overall conclusions.

X1: Fixed mindset X2: Achievement
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−0.05
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Figure 2: Lowess representations of X1 (left) and X2 (right) as moderators.

2.4 Goal 3: Moderation by other covariates

We presented moderation plots similar to those above for each of the continuous covariates

(X3, X4, and X5); these are displayed in the Supplemental Appendix as Figure A3. We

made more informative plots after the workshop; our conclusions did not change.

For binary covariates, we assessed moderation using the posterior distribution of the

difference in ATE between groups. For “first-generation status” (C3), we observe a mean

difference of -0.025 with 95% credible interval (-0.018, 0.060); the treatment effect is slightly

(but not significantly) lower for first-generation students. There is no evidence of a difference

in treatment effects by gender (difference estimate: -0.0095, 95% CI: (-0.44, 0.32)).

For multi-category factors, we began by simply examining side-by-side boxplots of the

adjusted individual ATEs by level. As can be seen in Figure A4 in the Supplemental

Appendix, there appears to be little evidence of a race effect. It is possible that there is a

trend of increasing ATE as student expected success increases.

3. Post-workshop analyses

After the workshop we examined a few issues in more depth, as summarized here.

3.1 Re-examination of modeling choices

Our initial comparison of modeling strategies with regard to the grouping variable only

considered differences in the overall ATE and corresponding uncertainty intervals. Given
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the focus on moderation, we are interested in understanding whether the individual ATE

estimates varied much based on this choice. Figure A6 in the Supplemental Appendix

presents scatter plots of individual ATEs across all pairs of the three choices. There is

little difference in estimates excluding the school variable and including it as a fixed effect.

However, modeling the grouped structure using a random effect creates a noticeably wider

distribution of individual-level effects.

We also examined more closely the impact of including the propensity score, by com-

paring our results to models without this feature. The estimate of the ATE in a model that

excludes propensity score from the covariate set is 0.249 with associated credible interval

(0.228, 0.270). This is almost identical to that of our preferred analyses. The correlation

between posterior means of individual effects between these analyses is 0.896. We provide

a more detailed comparison in the Supplemental Appendix.

3.2 Revisiting Moderation

We redid some of our original moderation analyses for several reasons. First, we found a

way of graphically displaying our uncertainty about the relationship trends that is easier

to interpret. Second, we wanted to more explicitly test the “Goldilocks” hypothesis posed

by the research team. The analyses reported here are net of the impact of urbanicity on

the treatment effects. Figure A7 in the Supplemental Appendix displays similar results

without adjustment for urbanicity. These relationships are so dominated by the urbanicity-

specific treatment effect differentials that they nearly all demonstrate a “reverse Goldilocks”

pheonomenon. We start by discussing moderation by school-level achievement, X2, since

the hypotheses regarding X2 are more complicated.

Moderation by X2. We explore the research questions about potential moderation by

X2 in two ways. Our first approach partitions X2 into 3 subgroups using a recursive

partitioning algorithm. Then treatment effects are averaged within subgroup to create

draws from the posterior distribution of the average treatment effect for “low”, “medium”,

and “high” values of X2. We can compare the “low” and “medium” subgroups or the

“high” and “medium” subgroup by differencing the corresponding posterior distributions,

as displayed on the left side of Figure 3. The posterior probability that the average treatment

effect for medium subgroup is greater than for the low subgroup is 99.9%. However, the

effect for the medium subgroup is not likely to be greater than the “high” subgroup - indeed,

we find a posterior probability of 97.8% that the high subgroup has a larger average effect.

This analysis does not provide evidence for the Goldilocks effect.

Second, we display on the right side of Figure 3 a scatter plot of school-level average

treatment effects (net of urbanicity-specific means) versus X2 with a sample of quadratic

fits to the posterior draws to illustrate our uncertainty about this fit. While limited by its
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Figure 3: Left: Histograms of posterior distributions of differences in school average treat-

ment effects between the medium and low X2 subgroups (top) and the high and

medium subgroups (bottom). Right: Posterior distributions for school average

treatment effects as a function of X2, after controlling for XC. Points are the

posterior means of school average treatment effects and vertical lines show as-

sociated 95% posterior credible intervals. Curved lines show 30 samples from

the posterior distribution of quadratic regressions fit to the school average effects

(gray lines) and the posterior mean of all such regressions (black line).

simplistic parametric form, examining the coefficient of the squared term offers a straightfor-

ward test for a rise-then-fall relationship. The posterior mean indicates a slight Goldilocks

effect, however the posterior uncertainty in the square-term coefficient is consistent with no

effect. There is only an approximate 68.7% posterior probability of this term being negative.

Even cursory visual inspection of Figure 3 discounts the alternative hypothesis that the

higher school-level achievement is associated with smaller treatment effects.

Moderation by X1. The relationship between school-level treatment effects and fixed

mindset, X1, is decreasing without strong evidence of quadratic curvature, as displayed in

Figure 4. The probability that the linear part of this decreasing trend is less then zero is

approximately 96.6%, and the probability that the quadratic part is less than zero is 75.8%.

Moderation by the other school-level continuous covariates. In Figure 5 we dis-

play moderation plots similar to those in the previous section for the remaining continuous

school-level variables: “minority composition” (X3), “poverty concentration” (X4), and

“school size” (X5). The posterior probabilities that the linear terms are negative are ap-
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Figure 4: Posterior distributions for school average treatment effects as a function of X1,

after controlling for XC. All else is as described in Figure 3.

proximately 84.0%, 73.0%, and 10.6% respectively, while the corresponding probabilities

for the quadratic terms are 90.8%, 91.4%, and 6.3%. This provides some evidence of a

Goldilocks effect for poverty concentration but nothing earthshattering.
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Figure 5: Posterior distributions for school average treatment effects as a function of X3,

X4, and X5, net of XC. All else is as described in Figure 3.

Moderation by Student Expected Success: A closer look. We return to examine

moderation by S3, student expected success, because our initial results provided some

evidence for a moderated effect but we performed no formal tests.4 Figure 6 displays a

line plot connecting the posterior means of the ordered categories along with corresponding

credible intervals. The right plot tests whether levels 6 and 7 have larger effects than those

below; there is moderate support (91% probability) for this hypothesis.

4. The Supplemental Appendix provides a somewhat similar reanalysis for the race variable.
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Figure 6: Left: Means and 95% credible intervals of posterior distributions (impact of XC

removed) for each level of ordered categorical variable S3 presented as a line plot.

Right: Posterior distribution for the difference in mean effects between the two

top levels of S3 and the rest. About 91% of this distribution lies above zero.

3.3 More formal checks of assumptions

BART has already been incorporated into diagnostic frameworks to examine the plausibility

of two crucial causal assumptions: ignorability and overlap.

Dorie et al. (2016) demonstrate how BART can be incorporated into a sensitivity analysis

framework to help researchers to understand under what conditions their results might be

sensitive to unobserved confounding. This approach is available in the treatSens package

on CRAN as the function treatSens.BART. The results from this sensitivity analysis are

displayed in Figure A10 in the Supplementary Appendix. This plot reveals that the level of

unobserved confounding would need to be extremely strong in order to remove the estimated

positive effect. This sensitivity analysis strongly supports our assumption of ignorability.5

Our covariate-by-covariate examination of overlap in the previous section (results dis-

played in the Supplemental Appendix) provided strong evidence in support of marginal

balance and overlap. In the Supplemental Appendix we present two additional looks at

the issue. The first, displayed on the left side of Figure A9, is a scatter plot of the joint

distribution (estimated posterior means of) Y (0) and Y (1) for each observation for both

treated (red) and control (blue) observations that suggests strong overlap.

To investigate local overlap (as suggested in the workshop discussion) we calculated an

overlap statistic recommended by Hill and Su (2013). For each person we calculate the ratio

of the variance of the posterior distribution of their counterfactual outcome relative to the

variance of the posterior distribution for their factual outcome. The distribution of these

ratios is displayed in Figure 4 A9. We gauge the extremity of any such ratio relative to a

5. The treatSens package does not yet accommodate random effects so was run with fixed effects.
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Chi-squared distribution; the 10% cutoff would be about 2.7; no ratios even come close to

this threshold, suggesting that overlap is present locally as well as marginally.

4. Discussion

Several features make BART a powerful tool for causal inference. The sum-of-trees model

flexibly fits even highly non-linear response surfaces. The Bayesian inferential framework

allows us to easily quantify our uncertainty not only about the average treatment effect

and individual-level treatment effects but also any functions of the potential outcomes (all

without re-using our data). The recent extensions that accommodate varying treatment

effects extend the applicability of this tool to simple multilevel data structures.

We used BART to address the questions posed and found strong evidence of a large pos-

itive average effect of the intervention (the “effect size” is about .4 and the credible interval

has near zero probability of covering 0). Urbanicity strongly moderates this treatment effect

therefore we addressed the other questions after adjusting for this.6 Net of urbanicity, we

find some evidence of moderation at the school level: the school-level mean of students’

fixed mindsets, X1, is moderately negatively associated with the size of effect; achievement,

X2, is moderately positively associated. Of all student-level variables there is most support

for moderation by student expected success, S3.

Our results are predicated on satisfying several assumptions—ignorability, overlap, etc.—

that in some situations can be heroic. The BART extensions that easily allow examination

of the evidence for and implications of these assumptions add credibility to our analyses.

We found strong support that these assumptions were satisfied.
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Appendix A. Supplemental Appendix to Carnegie et al. Discussion

A.1 Additional workshop analyses

Overlap plots We examined the overlap and balance of each of the covariates marginally

through a variety of plots; see Figure A1 and Figure A2. These demonstrated a high degree

of both balance and overlap.
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Figure A1: Overlap in student-level binary variables (left) and multiple-level categorical

variables (right)
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Effect modification by continuous variables: lowess plots For the workshop, we

presented plots of the relationship between the school-level treatment effects and each of

the potential moderators as lowess curves with uncertainty bounds. Figure A3 gives the

resulting plots for school-level continuous covariates X3 through X5.

X3: Minority composition X4: Poverty concentration X5: School size
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Figure A3: Lowess representations of X3 (left) through X5 (right) as moderators.

Effect modification by categorical variables: boxplots For categorical variables, we

used simple side-by-side boxplots to evaluate potential effec modification. There was little

evidence of an effect of race using this method, but some suggestion of an increasing effect

with student expected success (S3). In particular it appears that the treatment effect is

larger for students whos expected success is greater than 5.
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Figure A4: Boxplots of adjusted individual ATE by of S3 (left) and C1 (right) as modera-

tors.

A.2 Additional results from post-workshop analyses

The impact of group-level modeling strategies The plot in A6 displays a scatter

plot of individual ATE’s that displays how they vary across adjustment methodologies: no

66



Treatment effect heterogeneity with BART

adjustment (that is, including school ID as a continuous covariate so that BART is forced to

make splits based on difference between continguous categories), fixed effects, and random

effects.

Figure A5: Scatterplots of individual ATE estimates across adjustment methodologies.

Impact of adding the propensity score as a covariate We discuss in the main text

the high degree of correspondence between the individual-level treatment effect estimates

produced using an estimation strategy that includes the estimated propensity score as a

covariate versus one that excludes it. However a scatter plot of the two sets of estimates

reveals an interesting feature which is that these estimates appear to come from a mixture

of two subpopulations. When we predict the random effect estimates using a regression tree

S3 emerges as by far the strongest predictor. Highlighting the pattern we saw in Figure

A4.

Treatment Effect Modification when urbanicity has not been netted out. The

plots in the main test display results examining associations between covariate and treat-

ment effects. We felt it was also important to examine how different these results might be

if we had decided not to net out urbanicity (XC). Figure A7 shows school average treatment

effects as a function of X2 with levels of XC highlighted by color. Urbanicity category 4 is

markedly below the others and it complicates one of the primary objectives of this exercise:

characterizing the moderating effect of X2. Not only are the hypotheses that X2 has a

“Goldilocks” impact on the treatment effect or that it steadily decreases effectiveness ruled

out, if urbanicity is not controlled for one can reach an opposite conclusion - that of least

effect in the middle range. Consequently, all future analyses are done by controlling for

urbanicity and subtracting out the level average effects.

Moderation by Race: A closer look We revisited moderation by race after the work-

shop to implement some more formal tests. Figure A8 shows the racial average treatment

effects after controlling for urbanicity (XC). It provides some evidence of racial moderation

of the treatment effect, however many of the effects are consistent across race categories.
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Figure A6: Scatterplot of individual ATE estimates using random effects model with and

without propensity score included as a predictor.

The highest and lowest race average treatment effects are estimated with a considerable

degree of uncertainty due to their sample sizes, however the posterior distribution of the

difference between the highest and lowest racial averages - based on their posterior means -

yields a borderline “statistically significant” difference. The distribution over this difference

has 5.2% probability assigned to negative values, so that a one-sided posterior credible inter-

val would just barely include 0. However this contrast was chosen after looking at the plots

and without a clear hypothesis about “race level 11” as a specific moderator. Therefore we

see such analyses as exploratory.

Diagnostics that assess plausibility of the ignorability and overlap assumptions.

Figure A9 displays evidence regarding the overlap based on BART output as described in

the main text.

Sensitivity to unobserved confounding. We see that the amount of confounding nec-

essary to substantively change our results would be quite extreme and certainly far exceeds

the current levels of associations with observed covariates.
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Figure A7: Posterior distributions for school average treatment effects as a function of,
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regressions fit to the school average treatment effects.
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Figure A9: Left: Overlap across treatment (red) and control (blue) groups with regard

to distribution of Y(0) and Y(1). Right: Distribution of variance ratios for

counterfactual versus factual outcomes.

Figure A10: Sensitivity to unobserved confounding.
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