Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Phytochemical genomics in Arabidopsis thaliana: A case study for functional identification of flavonoid biosynthesis genes

  • Takayuki Tohge , Keiko Yonekura-Sakakibara , Rie Niida , Akiko Watanabe-Takahashi and Kazuki Saito

Abstract

The completion of the whole genome sequence of Arabidopsis thaliana has made it possible to explore the phytochemical genomics in this species by determining gene-to-metabolite correlation through the comprehensive analysis of metabolite accumulation and gene expression. In this study, flavonoid profiling of wild-type plants and T-DNA insertion mutants was analyzed using ultra-performance liquid chromatography (UPLC)/photodiode array detection (PDA)/electrospray ionization (ESI)/multiple-stage mass spectrometry (MSn). Detailed analysis of the metabolite changes in the mutants suggested the functions of genes that have been mutated. In silico coexpression analysis of genes involved in flavonoid metabolism in Arabidopsis was performed using a publicly available transcriptome database of DNA microarrays. We inferred a coexpression framework model of the genes involved in the pathways of flavonol, anthocyanin, and proanthocyanidin synthesis, suggesting specific functions and coregulation of the genes of pathway enzymes and transcription factors. The metabolic profiling of the omt1 mutant lacking a methyltransferase gene narrowed down by the coexpression analysis showed that AtOMT1 (At5g54160) is involved not only in the production of lignins and sinapoyl esters but also in the methylation of flavonols forming isorhamnetin. These results suggest that the functional genomics approach by detailed target-metabolite profiling with transcriptome coexpression analysis provides an efficient way of identifying novel gene functions involved in plant metabolism.


Conference

International Symposium on Chemistry of Natural Products (ISCNP-25) and 5th International Conference on Biodiversity (ICOB-5), International Conference on Biodiversity, International Symposium on the Chemistry of Natural Products, ICOB, ISCNP, Biodiversity, Natural Products, 25th, Kyoto, Japan, 2006-07-23–2006-07-28


References

1. doi:10.1016/S0031-9422(02)00712-4, R. A. Dixon, D. Strack. Phytochemistry 62, 815 (2003).Search in Google Scholar

2. J. B. Harborne (Ed.). The Flavonoid: Advances in Research Since 1986, Chapman & Hall, London (1994).10.1007/978-1-4899-2911-2Search in Google Scholar

3. doi:10.1016/S0981-9428(98)80098-3, T. L. Graham. Plant Physiol. Biochem. 36, 135 (1998).Search in Google Scholar

4. doi:10.1021/np990080o, M. Veit, G. F. Pauli. J. Nat. Prod. 62, 1301 (1999).Search in Google Scholar

5. doi:10.1016/S0031-9422(01)00460-5, S. J. Bloor, S. Abrahams. Phytochemistry 59, 343 (2002).Search in Google Scholar

6. doi:10.1104/pp.126.2.485, B. Winkel-Shirley. Plant Physiol. 126, 485 (2001).Search in Google Scholar

7. doi:10.1074/jbc.M303523200, P. Jones, B. Messner, J. Nakajima, A. R. Schaffner, K. Saito. J. Biol. Chem. 278, 43910 (2003).Search in Google Scholar

8. doi:10.1111/j.1365-313X.2005.02371.x, T. Tohge, Y. Nishiyama, M. Y. Hirai, M. Yano, J. Nakajima, M. Awazuhara, E. Inoue, H.Takahashi, D. B. Goodenowe, M. Kitayama, M. Noji, M. Yamazaki, K. Saito. Plant J. 42, 218 (2005).Search in Google Scholar

9. doi:10.1023/A:1013713905833, O. Fiehn. Plant Mol. Biol. 48, 155 (2002).Search in Google Scholar

10. doi:10.1016/j.tplants.2004.07.004, R. J. Bino, R. D. Hall, O. Fiehn, J. Kopka, K. Saito, J. Draper, B. J. Nikolau, P. Mendes, U.Roessner-Tunali, M. H. Beale, R. N. Trethewey, B. M. Lange, E. S. Wurtele, L. W. Sumner. Trends Plant Sci. 9, 418 (2004).Search in Google Scholar

11. doi:10.1186/gb-2004-5-6-109, J. Kopka, A. Fernie, W. Weckwerth, Y. Gibon, M. Stitt. Genome Biol. 5, 109 (2004).Search in Google Scholar

12. doi:10.1016/j.copbio.2005.02.007, K. M. Oksman-Caldentey, K. Saito. Curr. Opin. Biotechnol. 16, 174 (2005).Search in Google Scholar

13. doi:10.1073/pnas.1032967100, A. Goossens, S. T. Hakkinen, I. Laakso, T. Seppanen-Laakso, S. Biondi, V. De Sutter, F.Lammertyn, A. M. Nuutila, H. Soderlund, M. Zabeau, D. Inze, K. M. Oksman-Caldentey. Proc. Natl. Acad. Sci. USA 100, 8595 (2003).Search in Google Scholar

14. doi:10.1073/pnas.0403218101, M. Y. Hirai, M. Yano, D. B. Goodenowe, S. Kanaya, T. Kimura, M. Awazuhara, M. Arita, T.Fujiwara, K. Saito. Proc. Natl. Acad. Sci. USA 101, 10205 (2004).Search in Google Scholar

15. doi:10.1074/jbc.M502332200, M. Y. Hirai, K. Marion, Y. Fujikawa, M. Yano, D. B. Goodenowe, Y. Yamazaki, S. Kanaya, Y.Nakamura, M. Kitayama, H. Suzuki, N. Sakurai, D. Shibata, J. Tokuhisa, M. Reichelt, J.Gershenzon, J. Papenbrock, K. Saito. J. Biol. Chem. 280, 25590 (2005).Search in Google Scholar

16. doi:10.1104/pp.105.060525, T. Tokimatsu, N. Sakurai, H. Suzuki, H. Ohta, K. Nishitani, T. Koyama, T. Umezawa, N. Misawa, K. Saito, D. Shibata. Plant Physiol. 138, 289 (2005).Search in Google Scholar

17. doi:10.1104/pp.105.060376, P. Zhang, H. Foerster, C. P. Tissier, L. Mueller, S. Paley, P. D. Karp, S. Y. Rhee. Plant Physiol. 138, 27 (2005).Search in Google Scholar

18. doi:10.1111/j.1365-313X.2004.02016.x, O. Thimm, O. Blasing, Y. Gibon, A. Nagel, S. Meyer, P. Kruger, J. Selbig, L. A. Muller, S. Y. Rhee, M. Stitt. Plant J. 37, 914 (2004).Search in Google Scholar

19. doi:10.1093/nar/gkl783, T. Obayashi, K. Kinoshita, K. Nakai, M. Shibaoka, S. Hayashi, M. Saeki, D. Shibata, K. Saito, H. Ohta. Nucleic Acids Res. 35, D863 (2007).Search in Google Scholar

20. doi:10.1093/bioinformatics/bth398, D. Steinhauser, B. Usadel, A. Luedemann, O. Thimm, J. Kopka. Bioinformatics 12, 3647 (2004).Search in Google Scholar

21. doi:10.1111/j.1365-313X.2006.02681.x, C. H. Jen, I. W. Manfield, I. Michalopoulos, J. W. Pinney, W. G. Willats, P. M. Gilmartin, D. R. Westhead. Plant J. 46, 336 (2006).Search in Google Scholar

22. doi:10.1073/pnas.0503392102, S. Persson, H. Wei, J. Milne, G. P. Page, C. R. Somerville. Proc. Natl. Acad. Sci. USA 102, 8633 (2005).Search in Google Scholar

23. doi:10.1093/nar/gki566, J. Lisso, D. Steinhauser, T. Altmann, J. Kopka, C. Mussig. Nucleic Acids Res. 33, 2685 (2005).Search in Google Scholar

24. doi:10.1007/s11103-005-5346-5, C. M. M. Gachon, M. Langlois-Meurinne, Y. Henry, P. Saidrenan. Plant Mol. Biol. 58, 229 (2005).Search in Google Scholar

25. doi:10.1007/s00726-005-0253-2, M. Noji, C. G. Kawashima, T. Obayashi, K. Saito. Amino Acids 30, 163 (2006).Search in Google Scholar

26. doi:10.1104/pp.106.080358, H. Wei, S. Persson, T. Mehta, V. Srinivasasainagendra, L. Chen, G. P. Page, C. Somerville, A.Loraine. Plant Physiol. 142, 762 (2006).Search in Google Scholar

27. doi:10.1126/science.1086391, J. M. Alonso, A. N. Stepanova, T. J. Leisse, C. J. Kim, H. Chen, P. Shinn, D. K. Stevenson, J.Zimmerman, P. Barajas, R. Cheuk, C. Gadrinab, C. Heller, A. Jeske, E. Koesema, C. C. Meyers, H. Parker, L. Prednis, Y. Ansari, N. Choy, H. Deen, M. Geralt, N. Hazari, E. Hom, M. Karnes, C.Mulholland, R. Ndubaku, I. Schmidt, P. Guzman, L. Aguilar-Henonin, M. Schmid, D. Weigel, D. E. Carter, T. Marchand, E. Risseeuw, D. Brogden, A. Zeko, W. L. Crosby, C. C. Berry, J. R. Ecker. Science 301, 653 (2003).Search in Google Scholar

28. doi:10.1126/science.1071006, M. Seki, M. Narusaka, A. Kamiya, J. Ishida, M. Satou, T. Sakurai, M. Nakajima, A. Enju, K.Akiyama, Y. Oono, M. Muramatsu, Y. Hayashizaki, J. Kawai, P. Carninci, M. Itoh, Y. Ishii, T.Arakawa, K. Shibata, A. Shinagawa, K. Shinozaki. Science 296, 141 (2002).Search in Google Scholar

29. doi:10.1046/j.1365-313X.1995.08050659.x, B. W. Shirley, W. L. Kubasek, G. Storz, E. Bruggemann, M. Koornneef, F. M. Ausubel, H. M. Goodman. Plant J. 8, 659 (1995).Search in Google Scholar

30. N. Shikazono, Y. Yokota, S. Kitamura, C. Suzuki, H. Watanabe, S. Tano, A. Tanaka. Genetics 163, 1449 (2003).10.1093/genetics/163.4.1449Search in Google Scholar PubMed PubMed Central

31. doi:10.1515/BC.2000.095, C. Schoenbohm, S. Martens, C. Eder, G. Forkmann, B. Weisshaar. Biol. Chem. 381, 749 (2000).Search in Google Scholar

32. doi:10.1023/A:1023022825098, T. Goujon, R. Sibout, B. Pollet, B. Maba, L. Nussaume, N. Bechtold, F. Lu, J. Ralph, I. Mila, Y.Barriere, C. Lapierre, L. Jouanin. Plant Mol. Biol. 51, 973 (2003).Search in Google Scholar

33. doi:10.1146/annurev.arplant.57.032905.105252, L. Lepiniec, I. Debeaujon, J. N. Routaboul, A. Baudry, L. Pourcel, N. Nesi, M. Caboche. Annu. Rev. Plant Biol. 57, 405 (2006).Search in Google Scholar

34. doi:10.1006/abbi.1999.1681, I. Muzac, J. Wang, D. Anzellotti, H. Zhang, R. K. Ibrahim. Arch. Biochem. Biophys. 375, 385 (2000).Search in Google Scholar

35. doi:10.1104/pp.104.058032, F. Mehrtens, H. Kranz, P. Bednarek, B. Weisshaar. Plant Physiol. 138, 1083 (2005).Search in Google Scholar

36. doi:10.1105/tpc.12.12.2383, J. O. Borevitz, Y. Xia, J. Blount, R. A. Dixon, C. Lamb. Plant Cell 12, 2383 (2000).Search in Google Scholar

37. doi:10.1111/j.1365-313X.2005.02510.x, S. B. Sharma, R. A. Dixon. Plant J. 44, 62 (2005).Search in Google Scholar

38. doi:10.1105/tpc.12.10.1863, N. Nesi, I. Debeaujon, C. Jond, G. Pelletier, M. Caboche, L. Lepiniec. Plant Cell 12, 1863 (2000).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779040811/html
Scroll to top button