Skip to content
Publicly Available Published by De Gruyter February 20, 2013

Influence of applied pressure on the probability of electronic energy transfer across a molecular dyad

  • Mohammed A. H. Alamiry , Effat Bahaidarah , Anthony Harriman , Jean-Hubert Olivier and Raymond Ziessel

A pair of covalently linked molecular dyads is described in which two disparate boron dipyrromethene dyes are separated by a tolane-like spacer. Efficient electronic energy transfer (EET) occurs across the dyad; the mechanism involves important contributions from both Förster-type coulombic interactions and Dexter-type electron exchange processes. The energy acceptor is equipped with long paraffinic chains that favor aggregation at high concentration or at low temperature. The aggregate displays red-shifted absorption and emission spectral profiles, relative to the monomer, such that EET is less efficient because of a weaker overlap integral. The donor unit is insensitive to applied pressure but this is not so for the acceptor, which has extended π-conjugation associated with appended styryl groups. Here, pressure reduces the effective π-conjugation length, leading to a new absorption band at higher energy. With increasing pressure, the overall EET probability falls but this effect is nonlinear and at modest pressure there is only a small recovery of donor fluorescence. This situation likely arises from compensatory phenomena such as restricted rotation and decreased dipole screening by the solvent. However, the probability of EET falls dramatically over the regime where the π-conjugation length is reduced owing to the presumed conformational exchange. It appears that the pressure-induced conformer is a poor energy acceptor.


Conference

IUPAC Symposium on Photochemistry, International Symposium on Photochemistry, PHOTO, Photochemistry, XXIVth, Coimbra, Portugal, 2012-07-15–2012-07-20


References

1 10.1016/S0006-3495(03)75126-1, C. Berney, G. Danuser. Biophys. J.84, 3992 (2003).Search in Google Scholar

2 10.1016/j.tibs.2007.08.003, D. W. Piston, G.-J. Kremers. Trends Biochem. Sci.32, 407 (2007).Search in Google Scholar

3 10.1021/ja037088b, A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, H. Mattoussi. J. Am. Chem. Soc.126, 301 (2004).Search in Google Scholar

4 10.1073/pnas.0408164102, B. Schuler, E. A. Lipman, P. J. Steinbach, M. Kumke, W. A. Eaton. Proc. Natl. Acad. Sci. USA102, 2754 (2005).Search in Google Scholar

5 10.1073/pnas.0508584102, T. A. Laurence, X. X. Kong, M. Jagger, S. Weiss. Proc. Natl. Acad. Sci. USA102, 17348 (2005).Search in Google Scholar

6 10.1016/j.bpj.2009.12.4322, H. S. Chung, J. M. Louis, W. A. Eaton. Biophys. J.98, 696 (2010).Search in Google Scholar

7 10.1073/pnas.96.17.9597, O. Bieri, J. Wirz, B. Hellrung, M. Schutkowski, M. Drewello, T. Kiefhaber. Proc. Natl. Acad. Sci. USA96, 9597 (1999).Search in Google Scholar

8 10.1021/ma800548r, A. Turshatov, J. Adams, D. Johannsmann. Macromolecules41, 5365 (2008).Search in Google Scholar

9 10.1039/b200595f, G. Srinivas, B. Bagchi. PhysChemComm5, 59 (2002).Search in Google Scholar

10 10.1016/S0006-3495(89)82918-2, J. M. Beechem, E. Haas. Biophys. J.55, 1225 (1989).Search in Google Scholar

11 10.1016/j.ymeth.2006.10.004, A. De Cian, L. Guittat, M. Kaiser, B. Sacca, A. Amrane, A. Bourdoncle, P. Alberti, M. P. Teulade-Fichou, L. Lacroix, J. L. Mergny. Methods42, 183 (2007).Search in Google Scholar PubMed

12 10.1038/nmat1508, C. Y. Zhang, H. C. Yeh, M. T. Kuroki, T. H. Wang. Nat. Mater.4, 826 (2005).Search in Google Scholar PubMed

13 10.1039/b817158k, M. K. R. Fischer, T. E. Kaiser, F. Wurther, P. Bauerle. J. Mater. Chem.19, 1129 (2009).Search in Google Scholar

14 10.1007/BF00585226, T. Förster. Naturwissenschaften6, 166 (1946).Search in Google Scholar

15 10.1063/1.1699044, D. L. Dexter. J. Chem. Phys.21, 836 (1953).Search in Google Scholar

16 10.1021/jp2068792, T. Kawatsu, K. Matsuda, J.-Y. Hasegawa. J. Phys. Chem. A115, 10814 (2011).Search in Google Scholar PubMed

17 10.1021/jp9917143, J. Ray, N. Makri. J. Phys. Chem. A103, 9417 (1999).Search in Google Scholar

18 10.1021/jp7106507, C. Curutchet, B. Mennucci, G. D. Scholes, D. Beljonne. J. Phys. Chem. B112, 3759 (2008).Search in Google Scholar PubMed

19 10.1021/ja044097r, A. C. Benniston, A. Harriman, P. Y. Li, C. A. Sams. J. Am. Chem. Soc.127, 2553 (2005).Search in Google Scholar PubMed

20 10.1021/jp961744v, S. Jockusch, H.-J. Timpe, W. Schnabel, N. J. Turro. J. Phys. Chem. A101, 440 (1997).Search in Google Scholar

21 10.1016/0022-2852(61)90233-8, G. W. Robinson. J. Mol. Spectrosc.6, 58 (1961).Search in Google Scholar

22 10.1021/ja300866s, T. A. Grusenmeyer, J. Chen, Y. Jin, J. Nguyen, J. R. Rack, R. H. Schmehl. J. Am. Chem. Soc.134, 7497 (2012).Search in Google Scholar PubMed

23 10.1039/b108200k, J. Andreasson, A. Kyrychenko, J. Martensson, B. Albinsson. Photochem. Photobiol. Sci.1, 111 (2002).Search in Google Scholar PubMed

24 10.1126/science.289.5483.1327, J. Yu, D. Hu, P. F. Barbara. Science289, 1327 (2000).Search in Google Scholar PubMed

25 10.1016/j.jphotochem.2005.02.006, S. Chatterjee, S. Nandi, S. C. Bhattacharya. J. Photochem. Photobiol., A173, 221 (2005).Search in Google Scholar

26 10.1021/ja00102a004, A. M. Brun, A. Harriman. J. Am. Chem. Soc.116, 10383 (1994).Search in Google Scholar

27 10.1021/jp903789y, J. Fiedor, M. Pilch, L. Fiedor. J. Phys. Chem. B113, 12831 (2009).Search in Google Scholar PubMed

28 B. Schuler. Methods Mol. Biol.115, 350 (2007).Search in Google Scholar

29 10.1073/pnas.0607097104, K. A. Merchant, R. B. Best, J. M. Louis, I. V. Gopich, W. A. Eaton. Proc. Natl. Acad. Sci. USA104, 1528 (2007).Search in Google Scholar PubMed PubMed Central

30 10.1039/c2sc00948j, M. A. H. Alamiry, J. P. Hagon, A. Harriman, T. Bura, R. Ziessel. Chem. Sci.3, 1041 (2012).Search in Google Scholar

31 10.1063/1.460740, M. Kato, Y. Taniguchi. J. Chem. Phys.94, 4440 (1991).Search in Google Scholar

32 10.1021/jp068287v, R. Sabharwal, Y. Huang, Y. Song. J. Phys. Chem. B111, 7267 (2007).Search in Google Scholar

33 S. T. Adamy, S. T. Kerrick, J. Jonas. Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys.184, 185 (1994).10.1524/zpch.1994.184.Part_1_2.185Search in Google Scholar

34 10.1016/S0022-2836(03)00657-0, H. Herberhold, S. Marchal, R. Lange, C. H. Scheyhing, R. F. Vogel, R. Winter. J. Mol. Biol.330, 1153 (2003).Search in Google Scholar

35 10.1016/0032-3861(96)00425-9, S. Webster, D. N. Batchelder. Polymer37, 4961 (1996).Search in Google Scholar

36 10.1016/0301-0104(93)85105-H, Z. A. Dreger, J. M. Lang, H. G. Drickamer. Chem. Phys.169, 351 (1993).Search in Google Scholar

37 10.1021/jp900643m, A. Harriman, K. J. Elliot, M. A. H. Alamiry, L. Le Pleux, M. Severac, Y. Pellegrin, E. Blart, C. Fosse, C. Cannizzo, C. R. Mayer, F. Odobel. J. Phys. Chem. C113, 5834 (2009).Search in Google Scholar

38 10.1021/jp2070419, M. A. H. Alamiry, A. C. Benniston, G. Copley, A. Harriman, D. Howgego. J. Phys. Chem. A115, 12111 (2011).Search in Google Scholar PubMed

39 10.1021/j100102a008, S. Murphy, B. Sauerwein, H. G. Drickamer, G. B. Schuster. J. Phys. Chem.98, 13476 (1994).Search in Google Scholar

40 10.1021/jp022307l, A. Zhu, B. Wang, J. O. White, H. G. Drickamer. J. Phys. Chem. A107, 6932 (2003).Search in Google Scholar

41 10.1021/j100175a016, J. E. I. Korppi-Tommola, A. Hakkarainen, T. Hukka, J. Subbi. J. Phys. Chem.95, 8482 (1991).Search in Google Scholar

42 10.1080/0895795032000102379, K. Hara. High Press. Res.23, 225 (2003).Search in Google Scholar

43 10.1021/jp906009j, M. E. Madjet, F. Muh, T. Renger. J. Phys. Chem. B113, 12603 (2009).Search in Google Scholar

44 10.1039/c2ra00848c, M. A. H. Alamiry, A. C. Benniston, G. Copley, A. Harriman. RSC Adv.2, 1936 (2012).Search in Google Scholar

45 10.1562/0031-8655(2002)075<0327:FQYATR>2.0.CO;2, D. Magde, R. Wong, P. G. Seybold. Photochem. Photobiol.75, 327 (2002).Search in Google Scholar

46 10.1146/annurev.physchem.48.1.213, G. U. Bublitz, S. G. Boxer. Ann. Rev. Phys. Chem.48, 213 (1997).Search in Google Scholar

47 10.1021/bi00377a001, D. J. Lockhart, S. G. Boxer. Biochemistry26, 664 (1987).Search in Google Scholar

48 10.1021/ja00022a045, D. R. Crane, P. C. Ford. J. Am. Chem. Soc.113, 8510 (1991).Search in Google Scholar

49 10.1021/ja3007935, J.-H. Olivier, J. Barbera, E. Bahaidarah, A. Harriman, R. Ziessel. J. Am. Chem. Soc.134, 6100 (2012).Search in Google Scholar

50 10.1002/chem.201101407, J.-H. Olivier, J. Widmaier, R. Ziessel. Chem.—Eur. J.17, 11709 (2011).Search in Google Scholar

51 10.1002/chem.201001142, R. Ziessel, S. Rihn, A. Harriman. Chem.—Eur. J.16, 11942 (2010).Search in Google Scholar

52 10.1039/c0cc02687e, R. Ziessel, A. Harriman. Chem. Commun.47, 611 (2011).Search in Google Scholar

53 10.1021/jp026338s, S. Georgakopoulou, R. J. Cogdell, R. van Grondelle, H. van Amerongen. J. Phys. Chem. B107, 655 (2003).Search in Google Scholar

54 10.1021/jp003571m, G. D. Scholes, X. J. Jordanides, G. R. Fleming. J. Phys. Chem. B105, 1640 (2001).Search in Google Scholar

55 10.1021/jp037724s, K. F. Wong, B. Bagchi, P. J. Rossky. J. Phys. Chem.108, 5752 (2004).Search in Google Scholar

56 10.1103/PhysRevA.81.033825, D. L. Andrews. Phys. Rev. A81, 033825 (2010).Search in Google Scholar

57 10.1016/0009-2614(70)80220-2, V. Czikklely, H. D. Forsterling, H. Kuhn. Chem. Phys. Lett.6, 207 (1970).Search in Google Scholar

58 10.1021/ja9038856, A. Harriman, L. J. Mallon, K. J. Elliot, A. Haefele, G. Ulrich, R. Ziessel. J. Am. Chem. Soc.131, 13375 (2009).Search in Google Scholar PubMed

59 10.1021/ja00363a001, A. R. McIntosh, A. Siemiarczuk, J. R. Bolton, M. J. Stillman, T. F. Ho, A. C. Weedon. J. Am. Chem. Soc.105, 7215 (1983).Search in Google Scholar

60 10.1063/1.1492280, Q. H. Xu, M. D. Fayer. J. Chem. Phys.117, 2732 (2002).Search in Google Scholar

61 10.1063/1.1733166, S. J. Strickler, R. A. Berg. J. Chem. Phys.27, 814 (1962).Search in Google Scholar

Online erschienen: 2013-2-20
Erschienen im Druck: 2013-2-20

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-12-09-04/html
Scroll to top button