Skip to content
Publicly Available Published by De Gruyter May 27, 2012

Peculiarities of axial and radial Ge–Si heterojunction formation in nanowires: Monte Carlo simulation

  • Nataliya L. Shwartz , Alla G. Nastovjak and Igor G. Neizvestny

The process of axial and radial Si–Ge heterostructure formation during nanowire growth by vapor–liquid–solid (VLS) mechanism was studied using Monte Carlo (MC) simulation. It was demonstrated that radial growth can be stimulated by adding chemical species that decrease the activation energy of precursor dissociation or the solubility of semiconductor material in catalyst drop. Reducing the Si adatom diffusion length also leads to Si shell formation around the Ge core. The influence of growth conditions on the composition and abruptness of axial Ge–Si heterostructures was analyzed. The composition of the GexSi1–x axial heterojunction (HJ) was found to be dependent on the flux ratio, the duration of Si and Ge deposition, and the catalyst drop diameter. Maximal Ge concentration in the HJ is dependent on Ge deposition time owing to gradual changing of catalyst drop composition after switching Ge and Si fluxes. The dependence of junction abruptness on the nanowire diameter was revealed: in the adsorption-induced growth mode, the abruptness decreased with diameter, and in the diffusion-induced mode it increased. This implies that abrupt Ge–Si HJ in nanowires with small diameter can be obtained only in the chemical vapor deposition (CVD) process with negligible diffusion component of growth.


Conference

International Conference on Novel Materials and their Synthesis (NMS-VII) and the 21st International Symposium on Fine Chemistry and Functional Polymers (FCFP-XXI), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 7th, Shanghai, China, 2011-10-16–2011-10-21


References

1 10.1016/S1748-0132(08)70061-6, O. Hayden, R. Agarwal, W. Lu. Nano Today3, 12 (2008).Search in Google Scholar

2 10.1016/S1369-7021(06)71650-9, Y. Li, F. Qian, J. Xiang, C. M. Lieber. Mater. Today9, 18 (2006).Search in Google Scholar

3 10.1021/nl9029972, J.-S. Park, B. Ryu, C.-Y. Moon, K. J. Chang. Nano Lett.10, 116 (2010).Search in Google Scholar PubMed

4 10.1021/jp910821e, J. Johansson, K. A. Dick, P. Caroff, M. E. Messing, J. Bolinsson, K. Deppert, L. Samuelson. J. Phys. Chem. C114, 3837 (2010).Search in Google Scholar

5 10.1016/j.jcrysgro.2005.12.096, N. D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov, U. Gosele. J. Cryst. Growth290, 6 (2006).Search in Google Scholar

6 10.1021/nl072849k, T. E. Clark, P. Nimmatoori, K.-K. Lew, L. Pan, J. M. Redwing, E. C. Dickey. Nano Lett.8, 1246 (2008).Search in Google Scholar PubMed

7 10.1063/1.2360225, R. Dujardin, V. Poydenot, T. Devillers, V. Favre-Nicolin, P. Gentile, A. Barski. Appl. Phys. Lett.89, 153129 (2006).Search in Google Scholar

8 10.1021/nl9018148, I. A. Goldthorpe, A. F. Marshall, P. C. McIntyre. Nano Lett.9, 3715 (2009).Search in Google Scholar PubMed

9 L. J. Lauhon, M. S. Gudiksen, Ch. M. Lieber. Philos. Trans. R. Soc. London, Ser. A362, 1247 (2004).10.1098/rsta.2004.1377Search in Google Scholar PubMed

10 10.1021/nl070874k, Ch. Chen, Sh. Shehata, C. Fradin, R. LaPierre, Ch. Couteau, G. Weihs. Nano Lett.7, 2584 (2007).Search in Google Scholar PubMed

11 10.1063/1.3002299, M. J. Tambe, S. K. Lim, M. J. Smith, L. F. Allard, S. Gradecak. Appl. Phys. Lett.93, 151917 (2008).Search in Google Scholar

12 10.1021/ja057157h, M. A. Verheijen, G. Immink, Th. de Smet, M. T. Borgstrom, E. P. A. M. Bakkers. J. Am. Chem. Soc.128, 1353 (2006).Search in Google Scholar PubMed

13 10.1021/nl020289d, Ch. M. Lieber. Nano Lett.2, 81 (2002).Search in Google Scholar

14 10.1021/nl0156888, Y. Wu, R. Fan, P. Yang. Nano Lett.2, 83 (2002).Search in Google Scholar

15 10.1021/nl062596f, G. Liang, J. Xiang, N. Kharche, G. Klimeck, Ch. M. Lieber, M. Lundstrom. Nano Lett.7, 642 (2007).Search in Google Scholar PubMed

16 10.1038/nature04796, J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, Ch. M. Lieber. Nature441, 489 (2006).Search in Google Scholar PubMed

17 10.1021/nl073407b, Y. Hu, J. Xiang, G. Liang, H. Yan, Ch. M. Lieber. Nano Lett.8, 925 (2008).Search in Google Scholar PubMed

18 10.1038/nnano.2007.302, Y. Hu, H. H. Churchill, D. J. Reilly, J. Xiang, Ch. M. Lieber, Ch. M. Marcus. Nat. Nanotechnol.2, 622 (2007).Search in Google Scholar PubMed

19 10.1021/nl0614821, J.-E. Yang, Ch.-B. Jin, Ch.-J. Kim, M.-H. Jo. Nano Lett.6, 2679 (2006).Search in Google Scholar PubMed

20 10.1088/0268-1242/19/10/R02, D. J. Paul. Semicond. Sci. Technol.19, R75 (2004).Search in Google Scholar

21 10.1063/1.1753975, R. S. Wagner, W. C. Ellis. Appl. Phys. Lett.4, 89 (1964).Search in Google Scholar

22 T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak. Binary Alloy Phase Diagrams, ASM International, Material Park, OH (1990).Search in Google Scholar

23 10.1021/nl0719630, E. Sutter, P. Sutter. Nano Lett.8, 411 (2008).Search in Google Scholar PubMed

24 D. Bahloul-Hourlier, P. Perrot. J. Nano Res.4, 135 (2008).10.4028/www.scientific.net/JNanoR.4.135Search in Google Scholar

25 10.1063/1.3173811, K. M. Varahramyan, D. Ferrer, E. Tutuc, S. K. Banerjee. Appl. Phys. Lett.95, 033101 (2009).Search in Google Scholar

26 10.1038/nature01141, L. J. Lauhon, M. S. Gudiksen, D. Wang, Ch. M. Lieber. Nature420, 57 (2002).Search in Google Scholar PubMed

27 10.1021/nl1031138, Y. Zhao, J. T. Smith, J. Appenzeller, Ch. Yang. Nano Lett.11, 1406 (2011).Search in Google Scholar PubMed

28 10.1021/nl802408y, I. A. Goldthorpe, A. F. Marshall, P. C. McIntyre. Nano Lett.8, 4081 (2008).Search in Google Scholar PubMed

29 10.1063/1.3531631, H.-K. Chang, S.-Ch. Lee. Appl. Phys. Lett.97, 251912 (2010).Search in Google Scholar

30 10.1088/0268-1242/14/2/012, D. Briand, M. Sarret, K. Kis-Sion, T. Mohammed-Brahim, P. Duverneuil. Semicond. Sci. Technol.14, 173 (1999).Search in Google Scholar

31 10.1007/s00339-007-4376-z, N. Li, T. Y. Tan, U. Gosele. Appl. Phys. A90, 591 (2008).Search in Google Scholar

32 10.1126/science.1178606, C.-Y. Wen, M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E. A. Stach, F. M. Ross. Science326, 1247 (2009).Search in Google Scholar PubMed

33 10.1039/b817391e, J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea, L. J. Lauhon. J. Mater. Chem.19, 849 (2009).Search in Google Scholar

34 10.1021/nl201124y, D. E. Perea, N. Li, R. M. Dickerson, A. Misra, S. T. Picraux. Nano Lett.11, 3117 (2011).Search in Google Scholar

35 10.1134/S1995078009030094, A. V. Zverev, K. Yu. Zinchenko, N. L. Shwartz, Z. Sh. Yanovitskaya. Nanotechnol. Russia4, 215 (2009).Search in Google Scholar

36 10.1351/PAC-CON-09-12-03, A. G. Nastovjak, I. G. Neizvestny, N. L. Shwartz. Pure Appl. Chem.82, 2017 (2010).Search in Google Scholar

37 10.1103/PhysRevLett.96.096105, S. Kodambaka, J. Tersoff, M. C. Reuter, F. M. Ross. Phys. Rev. Lett.96, 096105 (2006).Search in Google Scholar

38 10.1016/S0167-5729(01)00012-7, B. Voigtlander. Surf. Sci. Rep.43, 127 (2001).Search in Google Scholar

39 10.1103/PhysRevB.69.125331, V. Cherepanov, B. Voigtlander. Phys. Rev. B69, 125331 (2004).Search in Google Scholar

40 10.1134/1.2010695, A. V. Zverev, I. G. Neizvestny, I. A. Reizvikh, K. N. Romanyuk, S. A. Teys, N. L. Shwartz, Z. Sh. Yanovitskaya. Semiconductors39, 967 (2005).Search in Google Scholar

41 10.1103/PhysRevB.74.121302, F. Glas. Phys. Rev. B74, 121302(R) (2006).Search in Google Scholar

42a L. Pauling. The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY (1960).Search in Google Scholar

42b L. Pauling. General Chemistry, Dover Publications, New York (1988).Search in Google Scholar

Published Online: 2012-5-27
Published in Print: 2012-5-27

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.6.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-11-12-05/html
Scroll to top button