Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Synthesis and properties of germanium nanowires

  • Dunwei Wang

As a promising electronic material, Ge nanowire (GeNW) has attracted much attention for its low band gaps, high mobilities, and unprecedented dimensions. This article reviews recent research and advancement on this topic and summarizes many aspects of GeNWs, including preparation, surface chemistry, physical properties, functional devices, and controlled assembly. It is shown that GeNWs can be readily synthesized by chemical methods and their electronic properties are comparable or superior to that of the bulk counterparts. Studies of surface chemistry have revealed dominant roles of surfaces on nanowires, and this result led to successful passivations toward air-stable, high-performance functional devices. Finally, controlled assembly to organize chemically synthesized nanowires into functional structures is discussed. Doors are opened up to widely utilize this novel material as excellent electronic building blocks.

References

1. <http://public.itrs.net/> (2005).Search in Google Scholar

2. doi:10.1016/S0039-6028(01)01558-8, H. Dai. Surf. Sci. 500, 218 (2002).Search in Google Scholar

3. doi:10.1021/ar0101640, H. J. Dai. Acc. Chem. Res. 35, 1035 (2002).Search in Google Scholar

4. C. M. Lieber. MRS Bull. 28, 486 (2003).10.1557/mrs2003.144Search in Google Scholar

5. doi:10.1002/adma.200390086, Y. N. Xia, P. D. Yang. Adv. Mater. 15, 351 (2003).Search in Google Scholar

6. P. D. Yang. MRS Bull. 30, 85 (2005).10.1557/mrs2005.26Search in Google Scholar

7. S. M. Sze. Physics of Semiconductor Devices, John Wiley, New York (1981).Search in Google Scholar

8. doi:10.1016/j.mee.2005.04.038, K. C. Saraswat, C. O. Chui, T. Krishnamohan, A. Nayfeh, P. McIntyre. Microelectron. Eng. 80, 15 (2005).Search in Google Scholar

9. doi:10.1016/0009-2614(93)89073-Q, J. R. Heath, F. K. Legoues. Chem. Phys. Lett. 208, 263 (1993).Search in Google Scholar

10. doi:10.1002/smll.200500033, T. Hanrath, B. A. Korgel. Small 1, 717 (2005).Search in Google Scholar

11. doi:10.1021/ja016788i, T. Hanrath, B. A. Korgel. J. Am. Chem. Soc. 124, 1424 (2002).Search in Google Scholar

12. doi:10.1063/1.1753975, R. S. Wagner, W. C. Ellis. Appl. Phys. Lett. 4, 89 (1964).Search in Google Scholar

13. doi:10.1126/science.279.5348.208, A. M. Morales, C. M. Lieber. Science 279, 208 (1998).Search in Google Scholar

14. doi:10.1103/PhysRevB.61.4518, Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee. Phys. Rev. B 61, 4518 (2000).Search in Google Scholar

15. doi:10.1063/1.119369, H. Omi, T. Ogino. Appl. Phys. Lett. 71, 2163 (1997).Search in Google Scholar

16. Y. F. Mei, Z. M. Li, R. M. Chu, Z. K. Tang, G. G. Siu, R. K. Y. Fu, P. K. Chu, W. W. Wu, K. W. Cheah. Appl. Phys. Lett. 86, (2005).10.1063/1.1849854Search in Google Scholar

17. doi:10.1021/cm9907514, Y. Y. Wu, P. D. Yang. Chem. Mater. 12, 605 (2000).Search in Google Scholar

18. doi:10.1021/ja0059084, Y. Y. Wu, P. D. Yang. J. Am. Chem. Soc. 123, 3165 (2001).Search in Google Scholar

19. doi:10.1063/1.1413495, G. Gu, M. Burghard, G. T. Kim, G. S. Dusberg, P. W. Chiu, V. Krstic, S. Roth, W. Q. Han. J. Appl. Phys. 90, 5747 (2001).Search in Google Scholar

20. doi:10.1002/adma.200400908, P. Nguyen, H. T. Ng, M. Meyyappan. Adv. Mater. 17, 549 (2005).Search in Google Scholar

21. doi:10.1016/j.ssc.2005.01.033, Z. W. Pan, S. Dai, D. H. Lowndes. Solid State Commun. 134, 251 (2005).Search in Google Scholar

22. doi:10.1002/anie.200290047, D. W. Wang, H. J. Dai. Angew. Chem., Int. Ed. 41, 4783 (2002).Search in Google Scholar

23. doi:10.1002/anie.200500291, D. W. Wang, R. Tu, L. Zhang, H. J. Dai. Angew. Chem., Int. Ed. 44, 2925 (2005).Search in Google Scholar

24. doi:10.1021/ja053836g, D. W. Wang, Y. L. Chang, Z. Liu, H. J. Dai. J. Am. Chem. Soc. 127, 11871 (2005).Search in Google Scholar

25. doi:10.1063/1.1815051, J. W. Dailey, J. Taraci, T. Clement, D. J. Smith, J. Drucker, S. T. Picraux. J. Appl. Phys. 96, 7556 (2004).Search in Google Scholar

26. doi:10.1063/1.1755846, A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, C. M. Lieber. Appl. Phys. Lett. 84, 4176 (2004).Search in Google Scholar

27. doi:10.1021/nl035166n, T. I. Kamins, X. Li, R. S. Williams. Nano Lett. 4, 503 (2004).Search in Google Scholar

28. doi:10.1021/cm031175l, S. Mathur, H. Shen, V. Sivakov, U. Werner. Chem. Mater. 16, 2449 (2004).Search in Google Scholar

29. doi:10.1007/s00339-006-3704-z, D. W. Wang, H. J. Dai. Appl. Phys. A 85, 217 (2006).Search in Google Scholar

30. doi:10.1021/ja047435x, D. W. Wang, Y. L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordon, H. J. Dai. J. Am. Chem. Soc. 126, 11602 (2004).Search in Google Scholar

31. doi:10.1021/nl049240t, T. Hanrath, B. A. Korgel. Nano Lett. 4, 1455 (2004).Search in Google Scholar

32. doi:10.1021/jp044491b, T. Hanrath, B. A. Korgel. J. Phys. Chem. B 109, 5518 (2005).Search in Google Scholar

33. doi:10.1149/1.2425342, G. W. Cullen, J. A. Amick, D. Gerlich. J. Electrochem. Soc. 109, 124 (1962).Search in Google Scholar

34. doi:10.1016/S0039-6028(03)00958-0, D. Bodlaki, H. Yamamoto, D. H. Waldeck, E. Borguet. Surf. Sci. 543, 63 (2003).Search in Google Scholar

35. doi:10.1021/ja974119s, J. L. He, Z. H. Lu, S. A. Mitchell, D. D. M. Wayner. J. Am. Chem. Soc. 120, 2660 (1998).Search in Google Scholar

36. doi:10.1063/1.1611644, D. W. Wang, Q. Wang, A. Javey, R. Tu, H. J. Dai, H. Kim, P. C. McIntyre, T. Krishnamohan, K. C. Saraswat. Appl. Phys. Lett. 83, 2432 (2003).Search in Google Scholar

37. doi:10.1063/1.105773, Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, Y. Masumoto. Appl. Phys. Lett. 59, 3168 (1991).Search in Google Scholar

38. doi:10.1063/1.467781, J. R. Heath, J. J. Shiang, A. P. Alivisatos. J. Chem. Phys. 101, 1607 (1994).Search in Google Scholar

39. doi:10.1002/(SICI)1521-4095(199903)11:5<388::AID-ADMA388>3.0.CO;2-6, S. A. Iakovenko, A. S. Trifonov, M. Giersig, A. Mamedov, D. K. Nagesha, V. V. Hanin, E. C. Soldatov, A. Nichols. Adv. Mater. 11, 388 (1999).Search in Google Scholar

40. doi:10.1021/ja0059138, F. Kim, S. Kwan, J. Akana, P. D. Yang. J. Am. Chem. Soc. 123, 4360 (2001).Search in Google Scholar

41. doi:10.1021/jp964087f, M. Sastry, K. S. Mayya, V. Patil, D. V. Paranjape, S. G. Hegde. J. Phys. Chem. B 101, 4954 (1997).Search in Google Scholar

42. doi:10.1021/nl0344209, A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang. Nano Lett. 3, 1229 (2003).Search in Google Scholar

43. doi:10.1021/nl0345062, D. Whang, S. Jin, Y. Wu, C. M. Lieber. Nano Lett. 3, 1255 (2003).Search in Google Scholar

Online erschienen: 2009-1-1
Erschienen im Druck: 2007-1-1

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779010055/html
Scroll to top button