Skip to content
Publicly Available Published by De Gruyter May 2, 2010

Combined coinage metal catalysis for the synthesis of bioactive molecules

  • Norbert Krause , Özge Aksin-Artok , Viola Breker , Carl Deutsch , Birgit Gockel , Manojkumar Poonoth , Yoshinari Sawama , Yuka Sawama , Tao Sun and Christian Winter

The use of the coinage metals copper, silver, and gold enables an efficient and stereo-selective assembly of bioactive heterocycles via allenic intermediates. The synthesis of functionalized allenes by SN2'-substitution or SN2'-reduction is mediated or catalyzed by copper, whereas silver and gold are the catalysts of choice for subsequent 5- or 6-endo-cyclizations. Overall, this sequence proceeds with efficient center-to-axis-to-center chirality transfer.


Conference

International Conference on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-15), International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis, OMCOS, Organometallic Chemistry Directed Toward Organic Synthesis, 15th, Glasgow, UK, 2009-07-26–2009-07-31


References

1 10.1021/cr800415x, B. H. Lipshutz, Y. Yamamoto (Eds.). Special issue on “Coinage Metals in Organic Synthesis”: Chem. Rev.108, 2793–3442 (2008).Search in Google Scholar PubMed

2 N. Krause (Ed.). Modern Organocopper Chemistry, Wiley-VCH, Weinheim (2002).10.1002/3527600086Search in Google Scholar

3 10.1351/pac200880051063, N. Krause, V. Belting, C. Deutsch, J. Erdsack, H.-T. Fan, B. Gockel, A. Hoffmann-Röder, N. Morita, F. Volz. Pure Appl. Chem.80, 1063 (2008).Search in Google Scholar

4 Enthalpy of formation for H2C=C=CH2: ca. 190 kJ mol–1. See: J. D. Cox, G. Pilcher. Thermo-chemistry of Organic and Organometallic Compounds, pp. 140–141, Academic Press, London (1970).Search in Google Scholar

5 N. Krause, A. S. K. Hashmi (Eds.). Modern Allene Chemistry, Wiley-VCH, Weinheim (2004).10.1002/9783527619573Search in Google Scholar

6a 10.1351/pac199264030387, A. Alexakis. Pure Appl. Chem.64, 387 (1992).Search in Google Scholar

6b 10.1016/j.tet.2004.09.094, N. Krause, A. Hoffmann-Röder. Tetrahedron60, 11671 (2004).Search in Google Scholar

6c 10.1002/ejoc.200900226, X. Tang, S. Woodward, N. Krause. Eur. J. Org. Chem. 2836 (2009).Search in Google Scholar

7a 10.1002/ange.200603739, C. Deutsch, B. H. Lipshutz, N. Krause. Angew. Chem.119, 1677 (2007).Search in Google Scholar

7b 10.1002/anie.200603739, C. Deutsch, B. H. Lipshutz, N. Krause. Angew. Chem., Int. Ed.46, 1650 (2007).Search in Google Scholar PubMed

7c 10.1021/cr0684321, C. Deutsch, N. Krause, B. H. Lipshutz. Chem. Rev.108, 2916 (2008).Search in Google Scholar PubMed

8 10.1021/ol901868m, C. Deutsch, B. H. Lipshutz, N. Krause. Org. Lett.11, 5010 (2009).Search in Google Scholar PubMed

9a 10.1021/cr078365q, J.-M. Weibel, A. Blanc, P. Pale. Chem. Rev.108, 3149 (2008).Search in Google Scholar PubMed

9b 10.1021/cr078361l, M. Alvarez-Corral, M. Munoz-Dorado, I. Rodriguez-Garcia. Chem. Rev.108, 3174 (2008).Search in Google Scholar PubMed

10 Review.Search in Google Scholar

10a 10.1016/j.tet.2008.01.081, H. C. Shen. Tetrahedron64, 3885 (2008); recent examples.Search in Google Scholar

10b 10.1021/jo061340r, C. T. Hyland, L. S. Hegedus. J. Org. Chem.71, 8658 (2006).Search in Google Scholar PubMed

10c M. Brasholz, H.-U. Reissig. Synlett 1294 (2007).10.1055/s-2007-977456Search in Google Scholar

10d 10.1002/adsc.200700471, S. Kim, P. H. Lee. Adv. Synth. Catal.350, 547 (2008).Search in Google Scholar

10e 10.1021/ol802073q, J. Park, S. H. Kim, P. H. Lee. Org. Lett.10, 5067 (2008).Search in Google Scholar PubMed

10f 10.1002/chem.200801166, B. Alcaide, P. Almendros, T. Martinez del Campo. Chem.—Eur. J.14, 7756 (2008).Search in Google Scholar PubMed

10g 10.1002/ange.200901608, Z. Gao, Y. Li, J. P. Cooksey, T. N. Snaddon, S. Schunk, E. M. E. Viseux, S. M. McAteer, P. J. Kocienski. Angew. Chem.121, 5122 (2009).Search in Google Scholar

10h 10.1002/anie.200901608, Z. Gao, Y. Li, J. P. Cooksey, T. N. Snaddon, S. Schunk, E. M. E.Viseux, S. M. McAteer, P. J. Kocienski. Angew. Chem., Int. Ed.48, 5022 (2009).Search in Google Scholar PubMed

11a 10.1002/ange.200704729, N. Bongers, N. Krause. Angew. Chem.120, 2208 (2008).Search in Google Scholar

11b 10.1002/anie.200704729, N. Bongers, N. Krause. Angew. Chem., Int. Ed.47, 2178 (2008).Search in Google Scholar PubMed

11c 10.1002/ange.200802332, V. Gandon, G. Lemiere, A. Hours, L. Fensterbank, M. Malacria. Angew. Chem.120, 7644 (2008).Search in Google Scholar

11d 10.1002/anie.200802332, V. Gandon, G. Lemiere, A. Hours, L. Fensterbank, M. Malacria. Angew. Chem., Int. Ed.47, 7534 (2008).Search in Google Scholar PubMed

12 10.1039/b905823k, C. Winter, N. Krause. Green Chem.11, 1309 (2009).Search in Google Scholar

13 10.1002/adsc.200800050, Ö. Aksin, N. Krause. Adv. Synth. Catal.350, 1106 (2008).Search in Google Scholar

14a 10.1002/ange.200902355, C. Winter, N. Krause. Angew. Chem.121, 6457 (2009).Search in Google Scholar

14b 10.1002/anie.200902355, C. Winter, N. Krause. Angew. Chem., Int. Ed.48, 6339 (2009).Search in Google Scholar PubMed

15 10.1002/adsc.200800469, M. Poonoth, N. Krause. Adv. Synth. Catal.351, 117 (2009).Search in Google Scholar

16 10.1002/ejoc.200901010, B. Gockel, N. Krause. Eur. J. Org. Chem. 311 (2010).Search in Google Scholar

17a 10.1039/b703995f, F. Volz, N. Krause. Org. Biomol. Chem.5, 1519 (2007).Search in Google Scholar PubMed

17b 10.1016/j.tet.2008.11.104, F. Volz, S. H. Wadman, A. Hoffmann-Röder, N. Krause. Tetrahedron65, 1902 (2009).Search in Google Scholar

18 10.1021/jo900987w, T. Miura, M. Shimada, P. De Mendoza, C. Deutsch, N. Krause, M. Murakami. J. Org. Chem.74, 6050 (2009).Search in Google Scholar PubMed

19 10.1039/b807733a, Y. Sawama, Y. Sawama, N. Krause. Org. Biomol. Chem.6, 3573 (2008).Search in Google Scholar PubMed

20 T. Sun, N. Krause. To be published.Search in Google Scholar

Online erschienen: 2010-5-2
Erschienen im Druck: 2010-5-2

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-09-09-23/html
Scroll to top button