Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-05T09:26:32.878Z Has data issue: false hasContentIssue false

Microtextures and the Origin of Muscovite-Kaolinite Intergrowths in Sandstones of the Utrillas Formation, Basque Cantabrian Basin, Spain

Published online by Cambridge University Press:  28 February 2024

Javier Arostegui*
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad del País Vasco/E.H.U., Apartado 644, 48080 Bilbao, Spain
María Jesús Irabien
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad del País Vasco/E.H.U., Apartado 644, 48080 Bilbao, Spain
Fernando Nieto
Affiliation:
Departamento de Mineralogía y Petrología, Universidad de Granada, 18002 Granada, Spain
Javier Sangüesa
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad del País Vasco/E.H.U., Apartado 644, 48080 Bilbao, Spain
María Cruz Zuluaga
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad del País Vasco/E.H.U., Apartado 644, 48080 Bilbao, Spain
*
E-mail of corresponding author: nppargaj@lg.ehu.es

Abstract

Muscovite-kaolinite intergrowths found in Albian sandstones of the Basque Cantabrian basin (northern Spain) were studied by optical, scanning and electron microscopy and electron microprobe analysis. Kaolinitization begins at grain edges, forming the characteristic fanned-out textures, and propagates toward the interior along the cleavages of muscovite. Kaolinite and muscovite occur as thick packets, being free of interlayering. Phase boundaries between both minerals show bidimensional crystallographic continuity, and no intermediate phases have been identified. The data obtained suggest that muscovite only supplied a template suitable for the epitactic crystallization of kaolinite, while Al was available in sufficient amounts due to the dissolution of detrital K-feldspar. Very small packets of magnetite or maghemite showing a coherent orientation with the kaolinite crystals have been recognized, and could be responsible for the small Fe contents usually detected in electron microprobe analyses of kaolinite.

Textural relationships between authigenic kaolinite and deformation microstructures in the intergrowths, combined with previous information about burial conditions, show that alteration proceeded during a late stage of the diagenetic history, related to the uplift of the studied materials as a result of the Alpine orogeny.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W., Brindley, G.W. and Brown, G., 1980 Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1124 Monograph, 5 .Google Scholar
Banfield, J.F. and Eggleton, R.A., 1990 Analytical transmission electron microscope studies of plagioclase, muscovite and K-feldspar weathering Clays and Clay Minerals 38 7789 10.1346/CCMN.1990.0380111.CrossRefGoogle Scholar
Bass, J.D. (1995) Elasticity of minerals, glasses and melts. Pp. 4563 in: Mineral Physics and Crystallography: A Handbook of Physical Constants (Ahrens, T.J., editor). American Geophysical Union Reference Shelf, 2.Google Scholar
Bjørlykke, K., 1998 Clay mineral diagenesis in sedimentary basins—a key to the prediction of rock properties. Example from the North Sea Basin Clay Minerals 33 1534 10.1180/000985598545390.CrossRefGoogle Scholar
Bjørlykke, K. Malm, O. and Elverhoin, A., 1979 Diagenesis in Mesozoic sandstones from Spitsbergen and the North Sea—a comparison Geologische Rundschau 68 11511171 10.1007/BF02274692.CrossRefGoogle Scholar
Buseck, P.R. and Buseck, P.R., 1992 Principles of transmission electron microscopy Minerals and Reactions at the Atomic Sscale: Transmission Electron Microscopy Washington, D.C. Mineralogical Society of America 136 10.1515/9781501509735 Reviews in Mineralogy, 27 .CrossRefGoogle Scholar
Buseck, P.R. Cowley, J.M. and Eyring, L., 1988 High-Resolution Transmission Electron Microscopy and Associated Techniques New York Oxford University Press 1128.Google Scholar
Champness, P.E. Cliff, G. and Lorimer, G.W., 1981 Quantitative analytical electron microscopy Bulletin of Mineralogy 104 236240.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W., 1975 The quantitative analysis of thin specimens Journal of Microscopy 103 203207 10.1111/j.1365-2818.1975.tb03895.x.CrossRefGoogle Scholar
Craw, D. Coombs, D.S. and Kawachi, Y., 1982 Inter-layered biotite-kaolin and other altered biotites, and their relevance to the biotite isograd in eastern Otago, New Zealand Mineralogical Magazine 45 7985 10.1180/minmag.1982.045.337.09.CrossRefGoogle Scholar
Crowley, S.F., 1991 Diagenetic modification of detrital muscovite: an example from the Great Limestone Cyclotherm (Carboniferous) of Co. Durham, UK Clay Minerals 26 91103 10.1180/claymin.1991.026.1.09.CrossRefGoogle Scholar
Jeong, G.Y., 1998 Vermicular kaolinite epitactic on primary phyllosilicates in the weathering profiles of anorthosite Clays and Clay Minerals 46 509520 10.1346/CCMN.1998.0460306.Google Scholar
Jiang, W. and Peacor, D.R., 1991 Transmission electron microscopic study of the kaolinitization of muscovite Clays and Clay Minerals 39 113 10.1346/CCMN.1991.0390101.CrossRefGoogle Scholar
Jiang, W. Peacor, D.R. and Essene, E., 1994 Clay minerals in the McAdams sandstone, California: implications for substitution of H3O+ and H2O and metastability of illite Clays and Clay Minerals 42 3545 10.1346/CCMN.1994.0420105.CrossRefGoogle Scholar
Kübler, B. and Lagache, M., 1984 Les indicateurs des transformations physiques et chimiques dans la diagenèse, temperature et calorimetric Themométrie et Barometrie Géologiques Paris Societé Française de Mineralogie et Cristallographie 489596.Google Scholar
Lockner, D.A. (1995) Rock failure. Pp. 127147 in: Rock Physics and Phase Relations: A Handbook of Physical Constants (Ahrens, T.J., editor). American Geophysical Union Reference Shelf, 3.Google Scholar
Ma, C. and Eggleton, R.A., 1999 Surface layer types of kaolinite: a high-resolution transmission electron microscope study Clays and Clay Minerals 47 181191 10.1346/CCMN.1999.0470208.Google Scholar
Mares, V.M. and Kronenberg, A.K., 1993 Experimental deformation in muscovite Journal of Structural Geology 15 10611075 10.1016/0191-8141(93)90156-5.CrossRefGoogle Scholar
Marfil, R. and Gomez Gras, D., 1992 Procedencia y modelo diagenético de las areniscas de la facies Utrillas en la Cordillera Ibérica (Umbral de Ateca) y la Meseta norcastellana Revista de la Sociedad Geológica de España 5 3–4 101115.Google Scholar
Passchier, C.W. and Trouw, R.A.J., 1996 Microtectonics Berlin Springer 289 pp.Google Scholar
Rat, P., 1988 The Basque-Cantabrian basin between the Iberian and European plates: some facts but many problems Revista de la Sociedad Geológica España 1 327348.Google Scholar
Robertson, I.D.M. and Eggleton, R.A., 1991 Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite Clays and Clay Minerals 39 113126 10.1346/CCMN.1991.0390201.CrossRefGoogle Scholar
Sangüesa, F.J. and Arostegui, J., 2000 Modelo subsidente y térmico Naturaleza, origen y distributión de los yacimientos de ambar de Peñacerrada (Álava-Spain) Spain Museo de Ciencias Naturales de Álava 22 pp.Google Scholar
Singh, B. and Gilkes, R.J., 1991 Weathering of a chromian muscovite to kaolinite Clays and Clay Minerals 39 571579 10.1346/CCMN.1991.0390602.CrossRefGoogle Scholar
Zuluaga, M.C., Irabien, M.J., Sangüesa, F.J., Aranburu, A., Agirrezabala, L.M. and Arostegui, J. (1998) Clay mineralogy of Albian sediments in a type section (San Felices) from the southern border of the Basque-Cantabrian basin (northern Spain). Proceedings 2nd Mediterranean Clay Meeting, Aveiro, Portugal, pp. 102107.Google Scholar