Skip to main content
Log in

Contributions of Forest Opal and Associated Crystalline Phases to Fine Silt and Clay Fractions of Soils

  • Published:
Clays and Clay Minerals

Abstract

The scanning electron microscope (SEM) is useful in the identification of biogenic opal. Opaline spheres, cups, and scrolled or convoluted sheets were identified in both soil and vegetative isolates. X-ray diffraction analysis indicates that both alpha quartz and cristobalite were co-associated with the amorphous opaline phase synthesized during life metabolism of deciduous tree leaves. Such crystalline phases were most abundant in the 2–5 μm fraction and many consist of anitsotropic rods with parallel extinction or equidimensional bodies with aggregate extinction. Between 2/3 and 3/4 of the total opal isolate from deciduous tree leaves was solubilized when digested for 2–5-min in boiling 0.5 N NaOH. Rate of dissolution was a function of particle-size and tree species. Biogenic opal of forest origin was about 10–15 times more soluble than grass opal, which probably reflects the higher specific surface of the former.

Résumé

Le microscope électronique à balayage (SEM) est très utile pour l’identification de l’opale biogène. Des sphères d’opaline, des cupules et des feuillets en volutes ou enroulés, ont été identifiés à la fois dans des fractions isolées à partir de sols ou de végétaux. L’analyse par diffraction X indique que du quartz alpha et de la cristobalite sont associés avec la phase opale amorphe synthétisée durant le métabolisme des feuilles d’arbres à feuilles caduques. De telles phases cristallines sont les plus abondantes dans la fraction 2–5 μm, et beaucoup d’entre elles consistent en des bâtonnets anisotropes à extinction parallèle ou en des masses équidimensionnelles avec une extinction d’aggrégat. De 2/3 à 3/4 de l’opale totale isolée des feuilles d’arbres à feuilles caduques est solubilisée lors d’un traitement de 2,5 min dans NaOH 0,5 N bouillant. La vitesse de dissolution est fonction de la taille des particules et de l’espèce de l’arbre. L’opale biogène forestière est environ 10–15 fois plus soluble que l’opale venant de l’herbe, ce qui indique probablement une surface spécifique plus élevée pour la première.

Kurzreferat

Das Rasterelektronenmikroskop (SEM) ist brauchbar für die Identifizierung von biogenem Opal. Kugeln, Schalen und gerollte oder gewundene Blättchen aus Opal wurden sowohl in Fraktionen aus Böden als auch aus Pflanzematerial nachgewiesen. Die Röntgenbeugungsanalyse zeight, daß sowohl α-Quarz als auch Cristobalit mit der amorphen Opalphase vergesellschaftet sind, die im Verlauf des Lebensstoffwechsels von Laubbaumblättern synthetisiert wird. Solche kristallinen Phasen traten am häufigsten in der 2–5 μm-Fraktion auf und bestehen vielfach aus anisotropen Stäbchen mit paralleler Auslöschung oder aus Körpern mit gleichen Achsenlängen und Aggregatauslöschung. Zwischen 2/3 und 3/4 der gesamten aus Laubbaumblättern isolierten Opalfraktionen lösen sich nach 2,5 minütiger Behandlung in kochender 0,5 N NaOH. Die Auflösungsrate war eine Funktion der Korngröße und der Baumart. Biogener Opal forstlichen Ursprungs war etwa 10–15 mal löslicher als Grass-Opal, was wahrscheinlich die höhere spezifische Oberfläche des erstgenannten widerspiegelt..

Резюме

Растровый электронный микроскоп полезен при выяснении природы биогенного опала. Опаловые шарики, чашечки и витковые или свернутые листки найдены как в земляных, так и в растительных выделениях. Рентгенографический анализ показывает, что как альфа квартц, так и кристобалит связаны с аморфной опаловой фазой, образовавшейся во время жизненного метаболизма листьев лиственных деревьев. Эти кристаллические фазы обильнее всего встречаются во фракции 2–5 /хм и могут состоять из анизотропических палочек с параллельной экстинкцией или с телами одинаковой размерности с экстинкцией агрегата. Между 2/3 и 3/4 общего опалового выделения из листьев лиственных пород растворилось при вываривании в течение 2,5 минут в кипящем 0,5 N NaOH. Скорость растворения зависит от размера частицы и от породы дерева. Биогенный опал лесного происхождения растворяется в 10–15 раз скорее, чем травяной опал, что, возможно, отражает более высокую удельную поверхность первого.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexaides, C. A. and Jackson, M. L. (1966) Quantitative clay mineralogical analysis of soils and sediments: Clays and Clay Minerals 14, 35–52.

    Article  Google Scholar 

  • Arimura, S. and Kanno, I. (1965) Some mineralogical and chemical characteristics of plant opals in soils and grasses of Japan: Bull, of the Kyushu Agric. Expt. Sta. 11, 111–120.

    Google Scholar 

  • Beavers, A. H. and Stephen, I. (1958) Some features of the distribution of plant opal in Illinois soils: Soil Sci. 86, 1–5.

    Article  Google Scholar 

  • Bohor, B. F. and Hughes, R. E. (1971) Scanning electron microscopy of clays and clay minerals: Clays and Clay Minerals 19, 49–54.

    Article  Google Scholar 

  • Bonnett, O. T. (1972) Silicified cells of grasses: A major source of plant opal in Illinois: Agric. Expt. Sta. Bull. 742, 1–36.

    Google Scholar 

  • Drum, R. W. (1968) Siliciflcation of Betula woody tissue in vitro: Science 161, 175–176.

    Article  Google Scholar 

  • Geis, J. W. (1973) Biogenic silica in selected species of deciduous angiosperms: Soil Sci. Soc. Am. Proc. 116 (2), 113–119.

    Article  Google Scholar 

  • Gill, E. D. (1967) Stability of biogenetic opal: Science 158, 810.

    Article  Google Scholar 

  • Henderson, J. H., Clayton, R. N., Jackson, M. L., Syers, J. K., Rex, R. W., Brown, J. L. and Sachs, I. B. (1972) Cristo-balite and quartz isolation from soils and sediments by hydrofluosilicic acid treatment and heavy liquid separation: Soil Sci. Soc. Am. Proc. 36, 830–835.

    Article  Google Scholar 

  • Hashimoto, I. and Jackson, M. L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration: In Clays and Clay Minerals, 7th Conf., pp. 102–113.

    Google Scholar 

  • Jones, R. L. (1969) Determination of opal in soil by alkali dissolution analysis: Soil Sci. Soc. Am. Proc. 33, 976–978.

    Article  Google Scholar 

  • Jones, R. L. and Beavers. A. H. (1963) Sponge spicules in Illinois soils: Soil Sci. Soc. Am. Proc. 27, 438–440.

    Article  Google Scholar 

  • Jones, R. L. and Beavers, A. H. (1964) Aspects of catenary and depth distribution of opal phytoliths in Illinois soils: Soil Sci. Soc. Am. Proc. 28, 413–416.

    Article  Google Scholar 

  • Jones, L. H. P. and Handreck, K. A. (1963) Effects of iron and aluminum oxides on silica in solution in soils: Nature 198, 852–853.

    Article  Google Scholar 

  • Jones, L. H. P. and Handreck, K. A. (1967) Silica in soils, plants and animals: In Advances in Agronomy, Vol. 19, pp. 107–149. Academic Press, New York.

    Google Scholar 

  • Jones, L. H. P. and Milne, A. A. (1963) Studies of silica in the oat plant—I: Plant and Soil 18, 207–220.

    Article  Google Scholar 

  • Jones, J. B., Segnit, E. R. and Nickson, N. M. (1963) Differential thermal and X-ray analysis of opal: Nature 198, 1191.

    Article  Google Scholar 

  • Jones, J. B., Sanders, J. V. and Segnit, E. R. (1964) Structure of opal: Nature 204, 990–991.

    Article  Google Scholar 

  • Lanning, F. C., Ponnaiya, R. W. X. and Crumpton, C. F. (1958) The chemical nature of silica in plants: Plant Physiol. 33, 339–343.

    Article  Google Scholar 

  • Lewin, J. C. (1961) The dissolution of silica from diatom walls: Geochim. Cosmochim. Acta 21, 182–198.

    Article  Google Scholar 

  • McKeague, J. A. and Cline, M. S. (1963) Silica in soils. In Advances in Agronomy, Vol. 15, pp. 339–396. Academic Press, New York.

    Chapter  Google Scholar 

  • Mizutani, S. (1967) Kinetic aspects of diagenesis of silica in sediments: J. Earth Sciences 15, 99–111.

    Google Scholar 

  • Rovner, I. (1971) Potential of opal phytoliths for use in paleocological reconstruction: Quaternary Res. 1, 343–359.

    Article  Google Scholar 

  • Smithson, F. (1958) Grass opal in British soils: J. Soil Sci. 9, 148–154.

    Article  Google Scholar 

  • Siever, R. and Scott, R. A. (1963) Organic geochemistry of silica: In Organic Geochemistry, pp. 579–595. Pergamon Press, New York.

    Google Scholar 

  • Teodorovich, G. I. (1961) Authigenic, principally syngenetic minerals in sedimentary rocks, their characteristics, conditions of formation, and classification: In Authigenic Minerals in Sedimentary Rocks, pp. 17–21. Consultants Bureau, New York.

    Chapter  Google Scholar 

  • Twiss, P. C., Suess, E. and Smith, R. M. (1969) Morphological classification of grass phytoliths: Soil Sci. Soc. Am. Proc. 33, 109–115.

    Article  Google Scholar 

  • Wilding, L. P. (1967) Radiocarbon dating of biogenetic opal: Science 156, 66–67.

    Article  Google Scholar 

  • Wilding, L. P., Brown, R. E. and Holowaychuk, N. (1967) Accessibility and properties of occluded carbon in biogenetic opal: J. Soil Sci. 101, 56–61.

    Article  Google Scholar 

  • Wilding, L. P. and Drees, L. R. (1968) Biogenic opal in soils as an index of vegetative history in the Prairie Peninsula: In The Quaternary of Illinois (Edited by Bergstrom, R. E.), Vol. 14, pp. 96–103. University of Illinois, College of Agriculture Special Publication.

    Google Scholar 

  • Wilding, L. P. and Drees, L. R. (1971) Biogenic opal in Ohio soils: Soil Sci. Soc. Am. Proc. 35, 1004–1010.

    Article  Google Scholar 

  • Wilding, L. P. and Drees, L. R. (1972) Contribution of biogenic opal to soils and subsequent transformation to crystalline components: International Clay Conference Abstracts, Madrid, Spain, pp. 246–247.

    Google Scholar 

  • Wilding, L. P. and Drees, L. R. (1973) Scanning electron microscopy of opaque opaline forms isolated from forest soils in Ohio: Soil Sci. Soc. Am. Proc. 37, 647–650.

    Article  Google Scholar 

  • Wilding, L. P. and Geissinger, H. D. (1973) Correlative light optical and scanning electron microscopy of minerals: a methodology study: J. Sed. Petrology, 43, 280–286.

    Google Scholar 

  • Yarilova, E. A. (1952) Phytolitharian crystallization in the soil: Dok Akad. Naud. U.S.S.R.) 83, 911–912; Chem. Abs. 46, 8301d.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilding, L.P., Drees, L.R. Contributions of Forest Opal and Associated Crystalline Phases to Fine Silt and Clay Fractions of Soils. Clays Clay Miner. 22, 295–306 (1974). https://doi.org/10.1346/CCMN.1974.0220311

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1974.0220311

Navigation