Skip to main content
Log in

An Ultraviolet Spectroscopic Method for Monitoring Surface Acidity of Clay Minerals under Varying Water Content

  • Published:
Clays and Clay Minerals

Abstract

The ability of a clay mineral surface to function as an acid is not represented by bulk pH measurements. A method using u.v. analysis and organic indicators has been developed to monitor surface acidity. The u.v. organic indicator method enables sensitive in situ quantification of surface-induced protonation in wet or dry clay systems. The clay preparation procedure used yields reproducible acidic behavior.

Résumé

L’aptitude de la surface d’une argile à fonctionner comme un acide n’est pas représentée par des mesures de pH effectuées sur la masse du produit. Une méthode utilisant l’analyse u.v. et des indicateurs organiques a été développée pour évaluer l’acidité de surface. La méthode u.v.-indicateur organique permet une quantification sensible in situ de la protonation induite par la surface dans les systèmes argile humide ou sèche. Le procédé utilisé pour la préparation de l’argile permet d’obtenir un comportement acide reproductible.

Kurzreferat

Die Fähigkeit einer Tonmineraloberfläche als Säure zu wirken, wird durch eine pH-Messung an der Gesamtprobe nicht widergegeben. Es wurde eine Methode entwickelt, um unter Verwendung der u.v.-Analyse und organischer Indikatoren die Oberflächenacidität zu bestimmen. Die u.v.-Indikator- methode ermöglicht empfindliche in situ Bestimmung oberflächeninduzierter Protonierung in nassen oder trockenen Tonsystemen. Das zur Präparafion der Tone benutzte Verfahren liefert reproduzierbare Aciditätseigenschaften.

Резюме

Способность поверхности глинистого минерала функционировать в качестве кислоты не выражается измерением рН в общей массе. Для проверки кислотности поверхности разработали метод анализа ультрафиолетовым спектром и органическими индикаторами. Метод ультрафиолетового органического индикатора дает возможность квантифицировать на месте протонацию, вызванную на поверхности влажной или сухой глины. Процедура приготовления глины дала возможность воспроизведения кислотного поведения поверхности.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey, G. W. and White, J. L. (1964) Review of adsorption and desorption of organic pesticides by soil colloids, with implications concerning pesticide bioactivity: J. Agr. Food Chem. 12, 324–332.

    Article  Google Scholar 

  • Bailey, G. W. and White J. L. (1970) Factors influencing the adsorption, desorption and movement of pesticides in soil: Residue Rev. 32, 29–92.

    Google Scholar 

  • Bailey, G. W., White, J. L. and Rothberg, T. (1968) Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character of adsorbate: Soil Sci. Soc. Am. Proc. 32, 222–234.

    Article  Google Scholar 

  • Dodd, C. G. and Satyabrata, R. (1960) Semiquinone cation adsorption on montmorillonite as a function of surface acidity: Clays and Clay Minerals 8, 237–251.

    Article  Google Scholar 

  • Farmer, V. C. and Mortland, M. M. (1966) An infra-red study of the coordination of pyridine and water to exchangeable cations in montmorillonite and saponite: J. Chem. Soc. (Lond.) A. 344–351.

  • Fripiat, J. J., Helsen, J. and Vielvoye, L. (1964) Formation de radicaux libres sur la surface des montmorillonites: Bull. Groupe Fr. Argiles 15, 3–10.

    Article  Google Scholar 

  • Fripiat, J. J., Jelli, A., Poncelet, G. and Andri, J. (1965) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonite and silicates. J. Phys. Chem. 69, 2185–2197.

    Article  Google Scholar 

  • Harter, R. D. and Ahlrichs, J. L. (1967) Determination of clay surface acidity by infra-red spectroscopy: Soil Sci. Soc. Am. Proc. 31, 30–33.

    Article  Google Scholar 

  • Harter, R. D. and Ahlrichs, J. L. (1969) Effect of acidity on reactions of organic acids and amines with montmorillonite clay surface: Soil Sci. Soc. Am. Proc. 33, 859–863.

    Article  Google Scholar 

  • Kerr, G. T., Zimmermann, R. H., Fox, H. A. and Wells, F. H. (1955) Degradation of hectorite by hydrogen ion: Clays and Clay Minerals 4, 322–329.

    Article  Google Scholar 

  • Low, P. F. (1955) The role of aluminum in the titration of bentonite: Soil Sci. Soc. Am. Proc. 19, 135–139.

    Article  Google Scholar 

  • McAuliffe, C. and Coleman, N. T. (1955) H-ion catalysis by acid clays and exchange resins: Soil Sci. Soc. Am. Proc. 19, 156–160.

    Article  Google Scholar 

  • Mortland, M. M. (1968) Protonation of compounds at clay mineral surfaces: Trans. 9th Internat. Congr. Soil Sci. 1, 691–699.

    Google Scholar 

  • Paver, H. and Marshall, C. E. (1934) The role of aluminum in the reactions of the clays: J. Soc. Chem. Ind. 53, 750–760.

    Article  Google Scholar 

  • Perrin, D. D. (1965) Dissociation Constants of Organic Bases in Aqueous Solution: Butterworths, London.

    Google Scholar 

  • Raman, R. V. and Mortland, M. M. (1969) Proton transfer reactions at clay mineral surfaces: Soil Sci. Soc. Am. Proc. 33, 313–317.

    Article  Google Scholar 

  • Russell, J. D. (1965) Infra-red study of reactions of ammonia with montmorillonite and saponite: Trans. Faraday Soc. 61, 2284–2294.

    Article  Google Scholar 

  • Russell, J. D., Cruz, M. I. and White, J. L. (1968a) The adsorption of 3-aminotriazole by montmorillonite: J. Agr. Food Chem. 16, 21–24.

    Article  Google Scholar 

  • Russell, J. D., Cruz, M., White, J. L., Bailey, G. W., Payne, W. R., Jr., Pope, J. D., Jr. and Teasley, J. I. (1968b) Mode of chemical degradation of s-triazines by montmorillonite: Science 160, 1340–1342.

    Article  Google Scholar 

  • Serratosa, J. M. (1966) Infra-red analysis of the orientation of pyridine molecules in clay complexes: Clays and Clay Minerals 14, 385–391.

    Article  Google Scholar 

  • Swoboda, A. R. and Kunze, G. W. (1964) Infra-red study of pyridine adsorbed on montmorillonite surfaces: Clays and Clay Minerals 13, 277–288.

    Article  Google Scholar 

  • Swoboda, A. R. and Kunze, G. W. (1968) Reactivity of montmorillonite surfaces with weak organic bases: Soil Sci. Soc. Am. Proc. 32, 806–811.

    Article  Google Scholar 

  • Talhoun, S. A. and Mortland, M. M. (1966) Complexes of montmorillonite with primary, secondary and tertiary amides—I. Protonation of amides on the surface of montmorillonite: Soil Sci. 102, 248–254.

    Article  Google Scholar 

  • Trouillaux, R., Salvadore, P., Vandermeersche, C. and Fripiat, J. J. (1968) Study of water layers adsorbed on Na-and Ca-montmorillonite by the pulsed nuclear magnetic resonance technique: Israel J. Chem. 6, 337–348.

    Article  Google Scholar 

  • Uytterhoeven, J. B., Christner, L. G. and Hall, W. K. (1965) Studies of the hydrogen held by solids—VIII. The decationated zeolites: J. Phys. Chem. 69, 2117–2126.

    Article  Google Scholar 

  • Walling, C. (1950) The acid strength of surfaces: J. Am. Chem. Soc. 72, 1164–1168.

    Article  Google Scholar 

  • Yariv, S., Heller, L. and Kaufherr, N. (1969) Effect of acidity of montmorillonite interlayers on the sorption of aniline derivatives: Clays and Clay Minerals 17, 301–308.

    Article  Google Scholar 

  • Young, J. F. (1967) Humidity control in the laboratory using salt solutions—A review: J. Appl. Chem. 17, 241–245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, G.W., Karickhoff, S.W. An Ultraviolet Spectroscopic Method for Monitoring Surface Acidity of Clay Minerals under Varying Water Content. Clays Clay Miner. 21, 471–477 (1973). https://doi.org/10.1346/CCMN.1973.0210607

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1973.0210607

Navigation