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This work is aimed at discussing the solution of the inverse kinematic problem using Multi-

Objective Evolutionary Algorithms (MOEA) for a vehicle-arm redundant robot. A 

simplified 5 DoF model was used to simulate the problem and the objective functions were 

properly selected assuming underwater operation. In addition, we present a review of the 

most important techniques used for solving the inverse kinematic problem, focusing at the 

end on the application of a Non-Dominated, Sorting, Elitist MOEA with nonlinear 

constraints. 

1. Introduction

Currently, robotics plays an important role in increasingly complex engineering 

applications, with high demands in terms of dexterity, such as the performance of 

of underwater robots; which in most cases are redundant [1-4].  In this work, we 

are interested in the case of redundant systems composed of a mobile platform 

and a manipulator arm, that could be used for ship’s hull cleaning and 

maintenance. 

     The buildup of organisms on the side of boat hulls, propellers, and other 

infrastructure in marine environments increases fuel consumption and 

ecosystem’s problems of invasive species.  Many ship owners periodically deploy 

divers to inspect ship hulls and remove the buildup of organism, known as 

Biofouling [5].  Hull cleaners are autonomous or semi-autonomous underwater 

robot used to scrub hull clean while still in the water.  The use of Robot cleaners 

can result in fuel savings and reduce the risk of the task itself. 

    There are several functional prototypes and patents developed for the 

inspection and cleaning of underwater surfaces. We can classify the different 

cleaning systems as, fastening methods to the hull surface and maneuverability 

mechanisms [6-9].   The results of this work will be applied to development of a 

manipulator on a free-floating submarine vehicle for inspection and cleaning of 

the target. Cui and others [10] reviewed the different challenges in terms of 

navigation of a mobile base and manipulation in conjunction with a robotic arm 

from four important aspects: positioning of the mobile robot by means of (GNSS), 

navigation based on vision and visual servo, robotic manipulation, planning and 

control of trajectories.  

    The present development analyzes the implementation of a method for the 

control of a redundant robot performing multiple prioritized tasks in the presence 

of limits in the joint range, speed and acceleration / torque efficiently. 
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     The redundancy problem is described such that, given a desired trajectory, 

𝑟𝑑(𝑡) ∈ 𝑅𝑚, defined in a coordinate system for the end effector of a manipulator, 

it requires the corresponding displacements in the joint space of the robot, the sets 

of vectors 𝜃(𝑡) ∈ 𝑅𝑛, where 𝑚 < 𝑛, using the definition: 𝑟𝑑(𝑡) = 𝑓(𝜃(𝑡)), where 

𝑓(∙) is the direct kinematics, which is nonlinear and differentiable with a structure 

and known parameters, for a given manipulator robot. 

Several methods have been proposed as resolutions for the redundancy problem, 

and to characterize multiple approaches, two general methods have been proposed 

[11], indirect methods and direct methods.  Indirect methods, such as the 

Pseudoinverse method, the Extended Jacobian method, kinematic optimization 

methods and the Lyapunov method or gradient method, are differential methods 

that are computationally intensive, so they are developed offline under previously 

specified optimization criteria.  The main disadvantages with this type of methods 

are that solution of the optimization problem only guarantees to be locally optimal 

and that the algorithms used exhibit numerical difficulties when the manipulator 

is close to kinematic singularities [12-14].  Differential control algorithms must 

be initialized with some joint configuration, θ, from the set of possible solution.  

Then the manipulator is kinematically controlled by the desired trajectory while 

remaining within the set of solutions [15].      

On the other hand, there are direct methods based on the approach of solving the 

inverse function of 𝑓(∙) in a closed form or approximate form.  Direct methods 

seek the explicit resolution of redundant degrees of freedom.  These tend to be 

fast, but generally require strong assumptions regarding the structure of the set of 

possible solutions [11]. Generally, task dependent constrains need to be specified 

to accommodate the redundancy. 

     The inverse functions are local and cyclical and because their evaluation is 

frequently rapid, when these can be determined, they are computationally suitable 

for real time control [16].  It must be considered that expressions in closed form 

for inverse kinematics are difficult if not impossible to determine, however it is 

possible to adapt approximate forms of these using neural networks or other 

approximation methods for nonlinear functions. 

     Traditionally, three models have been used to solve the inverse kinematic 

problem: geometric models, algebraic models and iterative models [17]. The use 

of geometric models is limited by the complexity of the structure, while algebraic 

models do not guarantee a closed form solution [18].  In iterative methods, 

convergence depends on the initial point of evaluation and are computationally 

prohibitive, which is why many researchers have focused their work on solving 

inverse kinematics using Artificial Neural Networks (ANN). 

     The application of Neural Networks to construct self-organized maps of the 

inverse kinematic problem, are well referenced [18-20]. In those works, the 

kinematics of non-redundant and redundant robots is solved after training the 

ANN for a period, yielding a unique solution corresponding to the desired position 

in the workspace.  Recently, the work of hybrid approaches based on Neural 
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Networks has allowed the training of ANN with variable optimization criteria 

over time, which was not possible on earlier works [10]. As example, Jin, L. and 

Li, S [21], use a Dynamic Neural Network to solve a problem of optimization of 

the manipulability of a redundant robot, transforming it into the resolution of a set 

time variants non-linear equations.  However, the major drawback of using ANN 

are still the difficulty of how to collect training sets, and that the training process 

when gradient-based learning algorithms is very slow, especially for a complex 

configuration, or a large set of training data. 

2.   Genetic Algorithms and Multi-Objective Evolutionary Algorithms 

When formulating the redundancy problem, as a case of optimization, the 

techniques based on Genetic Algorithms (GAs), take relevance.  The GAs are 

methods that solve constrained and unconstrained optimization problems and the 

popularity of their use is because they are naturally appropriate, with some 

modifications, for cases of multi-objective optimization.  GA allows a population 

composed of many individuals to evolve under specific rules of selection towards 

a state that maximizes fitness (function aptitude) or cost function.  The GA 

subsequently modifies the population of individuals, which represent the possible 

solutions.  On successive generations, the population evolves towards an optimal 

solution. This method solves a variety of optimization problems such as 

discontinuous, non-differentiable, stochastic or highly non-linear functions, 

which are intractable under other optimization techniques [22]. 

     Non-dominated Sorting Genetic Algorithm (NSGA) [22], was one of the first 

MOEAs, and from its use the following disadvantages have been highlighted [23]: 

a high computational cost, lacks elitism, and finally must specify the exchange 

parameter, which is a parameter that ensures diversity and equivalence in the 

solutions.  From here on, various modifications and new MOEAs algorithms have 

been developed [23, 24]. 

2.1.   MOEAs Constraints Management 

This work involved the optimization of multiple cost functions to solve the 

kinematic redundancy of a robot manipulator, subject to several constrains 

equations, which are related to the task and the robot configuration itself.  In 

general, an optimization problem can be defined as, 

 

min 𝑜 max          𝑓𝑚(𝑥),             𝑚 = 1,2, … , 𝑀; 

                   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑔𝑖(𝑥) ≥ 0,            𝑖 = 1,2, … 𝐼;                           (1)  

                  ℎ𝑗(𝑥) = 0,             𝑗 = 1,2, … 𝐽; 

                  𝑥𝑘
𝑖𝑛𝑓

≤ 𝑥𝑘 ≤ 𝑥𝑘
𝑠𝑢𝑝

,   𝑘 = 1,2, … , 𝐾; 
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where  𝑓𝑚(𝑥) are the fitness or cost functions and  𝑔𝑖(𝑥) ≥ 0 and ℎ𝑗(𝑥) = 0 are 

inequalities and equalities constraints, respectively.  The constrained optimization 

divides the search space into two regions; feasible (those solutions that comply 

with the constrains) and not feasible.  It’s clear that the set of optimal solution, 

Pareto-optimal, must belong to the feasible region. A possible solution would be 

for the MOEA to assign more pressure to the group that violates the constraints 

to a lesser degree, so in this way the algorithm is provided with a direction in the 

search for a feasible region [22]. 

     Another popular technique for handling constraints is the penalty function 

approach, in which, the objective and the normalized constraints are added and 

multiplied by a factor that penalizes them based on a minimization process. A 

drawback is that this factor needs to be updated according to some strategy. In the 

literature we can find several works [17-27], which present static and dynamic 

strategies for updating the penalty factor according to the objectives. The quality 

of the solution obtained depends on factor’s quality.   Recently, in the works of 

Fan, Z. et al. and Chehouri, A. et al.  [27, 28], the authors claim that the 

penalization approach deviates from the philosophy of evolution of the algorithms 

and propose a technique that preserves the main concept of the GAs, developing 

rules that include the value variations of the constraints for the selection and 

generation of new individuals.   In this work, the last approach was used for 

handling the nonlinear equality constraints. 

3.   Inverse Kinematic Solution of a Vehicle-Arm Robot 

In this section we present the solution of the inverse kinematic problem of a 

vehicle-arm robot model using a Non-Dominated, Sorting, Elitist Algorithm 

MOEA II, developed by Deb, K. [23].  The fitness functions were selected to 

maximized manipulability and minimized joint angle average displacement when 

moving to consecutive points of the trajectory.  

For the application of the MOEA II, the individuals of a population are defined as 

configurations, q, of the vehicle-arm, which will be used to evaluate two fitness 

(objective) function. Figure 1 shows the 5 DoF planar model and the generalized 

coordinates used.   

In the context of evolutionary multi-objective minimization problems, the term 

dominance refers to the case when the evaluation of a fitness functions, 𝑔𝑖, for an 

individual q1 gives smaller values than for other individual q2: 

 

𝑔𝑖(𝒒𝟏) ≤ 𝑔𝑖(𝒒𝟐)    ∀ 𝑖                                                  (2) 

𝑔𝑗(𝒒𝟏) < 𝑔𝑗(𝒒𝟐)    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗 

Thus, q1 dominates q2. The group of individuals that have noninferior fitness 

function values are non- dominated by any other individual and its set is called a 

pareto front. Therefore, for each individual on the Pareto front, one fitness 

function can only be improved by degrading another. 
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Figure 1. Vehicle – Manipulator Schematic: The generalized coordinates of the robot, q, are shown. 

3.1.   The MOEA II algorithm 

The MOEA II was implemented in MATLAB. The first step in the algorithm is 

creating an initial population (200 in our case) which is feasible with respect to 

the nonlinear constraints and the joint angles bounds. In this algorithm both, the 

objective function and constraints values are used to obtain scores for the 

population.  

After each next generation is created from selected parents, the children are 

obtained by mutation and crossover.  Afterward, all infeasible individuals are 

assigned a lower rank than any feasible individual. Within the infeasible 

population, the individuals are sorted by an infeasibility measure, which we take 

as the value of the constraints function. For the new generation, the current 

population is combined with the children. 

For a controlled elitist GA, it is important to maintain the diversity of population 

for convergence to an optimal Pareto front (23). The diversity is increase by 

keeping some of those individuals of the current population that are relatively far 

away of the pareto front. In addition, the number of individuals on the Pareto front 

(elite members) is limited using a fix fraction.  

3.2.   The Model and Simulation Results of the Vehicle-Arm system 

 The direct kinematic function 𝑓(𝑞), in equation 3, defines the position and 

orientation of the end effector (𝑥, 𝑦 , 𝜃) in terms of the generalized coordinates 

𝑞𝑜, 𝑞1, 𝑞2, 𝑞3, 𝑞4, as shown in figure 1. 

 

f(𝒒) = [

𝑞0 + 𝑙1 ∗ 𝑐𝑜𝑠(𝑞2) + 𝑙2 ∗ 𝑐𝑜𝑠(𝑞2 + 𝑞3) + 𝑙3 ∗ 𝑐𝑜𝑠(𝑞2 + 𝑞3 + 𝑞4)
𝑞1 + 𝑙1 ∗ 𝑠𝑖𝑛(𝑞2) + 𝑙2 ∗ 𝑠𝑖𝑛(𝑞2 + 𝑞3) + 𝑙3 ∗ 𝑠𝑖𝑛(𝑞2 + 𝑞3 + 𝑞4)

𝑞2 + 𝑞3 + 𝑞4
]    (3) 

 

For the intended application, it is important to assure a manipulability as high as 

possible to exert the require forces while following the desired trajectories on the 

vessel surface.  Thus, Yoshikawa’s manipulability index was used as the first 
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Fitness Function.  A second function, the square root of the difference between 

consecutive configurations, 𝑞̂𝑖
𝑡 − 𝑞̂𝑖

𝑡−1
, is used to assure that the optimal 

configuration of two consecutive points in the trajectory are close.     In addition, 

since it is easier to control the joint angles than the vehicle position in the water, 

a reducing gain, 𝐾𝑖, is used for the first two coordinates in the second fitness 

function to reduce as much as possible the motion of the vehicle or platform.  

Thus, the optimization problem is stated as: 

min      

               𝑔 =
1

𝑌(𝒒) + 1
;   where 𝑌(𝒒) = √𝐽(𝒒)𝐽𝑇(𝒒)

𝑆(𝑞̂) = √∑ 𝐾𝑖(𝑞̂𝑖
𝑡 − 𝑞̂𝑖

𝑡−1)2

𝑖

                  (5)    

   Subject to:       f(𝒒) = 𝐱̂𝑑   ;     𝒒𝑖𝑛𝑓 ≤ 𝒒 ≤ 𝒒𝑠𝑢𝑝. 

 

 

 

 

 

 

 
 

  
Figure 2.  Effect of applying different gains to q0 and q1. with K=10 (left) and K=100 (right),   

 

Where 𝐱̂𝑑, is the desired position and orientation of the end effector, 𝒒𝑖𝑛𝑓 and  𝒒𝑠𝑢𝑝are 

the lower and upper bound of the joint angles, and 𝐽(𝒒) is the Jacobian matrix, 

which obtained by direct differentiation of equation.  Figure 2, shows some of the 

typical results obtained when a series of positions of the end effector are given 

and a fixed orientation pointing in the positive x direction is asked.  The effect of 

the gain K can be appreciated, since the consecutive vehicle/platform positions 

stay closer when we increase its value.  When only K1 and K2 are increased, the 

relative displacement of the vehicle between successive configurations is reduced 

(shown in the text box for last two), as expected.  

With these results we have shown that a non-dominated elitist sorting 

evolutionary algorithm can be used to solved effectively the inverse kinematic 

problem of a redundant manipulator using multi-objective optimization.  The 

fitness/objective functions have been selected bearing in mind the characteristics 

of the task and still need to be validated in actual operational conditions. 

4.   Conclusions and Future Work 

The final individuals or joint coordinates were effectively selected out of the 

pareto front by choosing the best solution for the smoothness cost function, since 

the values of the manipulability does not vary much for the different solutions of 
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the front.  It is worth to mention that, to generate populations that expand into 

feasible and not feasible regions the number of initial individuals was increased 

up to 200.   The next step in this research is to simulate the complete 12 DoF 

system (6 DoF for the vehicle and 6 DoF on the arm) and implement an Impedance 

Control System on a ground vehicle + arm manipulator, having the kinematic 

optimization technique presented in this work as an offline process. 
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