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Abstract. The paper focuses on designing precoding ma-
trices in multi-cell multiple-input multiple-output (MIMO)
simultaneous wireless information and power transfer net-
works (SWIPT) where the sets of users are selected for data
transmission in each time slot and the unselected users are
dedicated to energy harvesting. The precoding design for the
SWIPT problem is formulated as a general multi-objective
maximization problem, in which the sum-rate (SR) and sum
harvested energy (SHE) are maximized simultaneously under
the transmit power constraints. Since the objective function
of the maximization problem is not concave in the design
matrix variables, it is difficult to directly obtain the optimal
solutions. To tackle this challenge, we recast the SR function
into one more amenable by applying the connection between
the minimum mean square error and achievable data rate.
In addition, to deal with the non-concavity of the harvested
energy function, we derive its concave minorant. Then, we
develop an efficient iterative algorithm based on alternating
optimization (AO) to obtain the optimal precoders. We also
analyze the convergence and computational complexity of the
proposed algorithm. Finally, by numerical simulation results
we investigate the trade-offs between the SR and SHE.

Keywords
Multicell MU-MIMO, SWIPT, spectral efficiency, pre-
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1. Introduction
In the last decade, the explosively growing demands

for high data rate and ubiquitous wireless communication
applications have triggered an urgent need to improve the
spectral efficiency (SE) in the next generation of wireless
communication networks. The fifth generation (5G) wire-
less network is expected to provide ultra high data rates to
meet the demands of high data rate applications and the mas-
sive number of wireless connected devices [1]. Thus, the SE
performancemetric is of importance for the wireless commu-
nication system designs. The authors of [2] optimized the SE
by designing the precoders using particle swarm optimiza-

tion for single-cell multiple-input multiple-output (MIMO)
broadcast channels. The coordinated multiple small cell sys-
tems with multi-antenna base stations (BSs) in which the
BSs jointly design the transmit precoders to manage inter-
user interference are known as a efficient means to improve
the SE [3], [4]. In [3], the authors designed the precoders to
maximize the sum-rate or minimum user rate by successive
convex quadratic program in full-duplex MIMO multicell
networks. With the significantly increasing number of wire-
less connected devices and dense deployment of multiple
small cells in the next generation of wireless networks, the
power consumption has recently received special attention
due to its economic and ecological concerns [5]. Refer-
ence [6] investigated the energy efficiency for cognitive radio
networks.

Towards to green wireless communications, energy har-
vesting (EH) techniques which power-constrained wireless
devices can harvest energy from the received radio frequency
(RF) signals to prolong the operation time have recently re-
ceived considerable attention [7–11]. The EH techniques
have been studied on various aspects, for example, beam-
forming/precoding designs [8–11] and the rate and energy
trade-off characteristics [12]. The EH problems have been
also investigated in different system models: cognitive ra-
tio networks [13], multi-user multiple-input multiple-output
(MU-MIMO) interference channels [14], [15] and physical
layer security [16], [17]. In this paper, we are concerned
with multicell MU-MIMO simultaneous wireless informa-
tion and power transfer network (SWIPT) wireless networks
in which the sets of users are selected to receive the signals
from downlink transmission while the idle users are able to
harvest energy from the RF signals of the downlink channel
signals.

Related works: The authors of [18] proposed an op-
portunistic interference alignment (OIA) for uplink MIMO
wireless networks in which the groups of users are selected
for uplink transmission while the unselected users harvest
energy from the RF signals transmitted by the selected users.
The authors developed an intra-cluster performance aware-
ness and OIA schemes to balance the system sum rate (SR)
and sum harvested energy (SHE). In [19], the authors consid-
ered themulticellmultiuser SWIPT system inwhich each user
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equipment (UE) is equipped with a single antenna. Each UE
can decode information and harvest energy simultaneously
by using a power splitting technique. By scheduling a single
UE for each time slot, the authors investigated the trade-
offs between the rate and energy of the system. Concerning
user selection strategies in multicell networks with multiple
single-antenna users, the authors in [26] proposed efficient
user selection schemes based on the pre-defined structures of
the precoding matrices (namely, distributed zero-forcing or
distributed virtual SINR) to potentially maximize the system
sum-rate. Alternatively, the authors in [20] proposed a multi-
objective optimization approach to maximize the data rates
and harvested energy in a single cell multi-user broadcast
system. More generally, reference [22] designed the precod-
ing matrices for either SR maximization under the quality
of service (QoS) and energy harvesting constraints or har-
vested energy maximization under throughput constraints in
the full-duplex multicell MU-MIMO wireless networks.

Contributions: Different from the above mentioned
works, in this paper, we consider the downlink multicell
MU-MIMO models and we aim at simultaneously maximiz-
ing the network SR and SHE by a means of multi-objective
optimization. Our major contributions are to develop an effi-
cient iterative algorithm to investigate the SE and harvested
energy trade-offs for the downlink multi-cell MU-MIMO
SWIPT networks. To efficiently handle intra-cell and inter-
cell interference and to improve the SE, we propose a user
scheduling scheme in which each BS exploits the channel
state information (CSI) to select a set of users for data trans-
mission and, then, the idle users which are not selected
for information transmission harvest energy to prolong their
battery lifetime. We first formulate the precoding design
as an optimization problem in which the SR and SHE are
simultaneously maximized subject to transmit power con-
straints at the BSs. The formulated problem of maximizing
the weighted sum of SR and SHE is a nonconvex optimiza-
tion one and, thus, it is mathematically challenging to obtain
the analytical optimal solutions. To tackle with the non-
concavity of the SR function, we exploit the relationship be-
tween the SR maximization and mean squared error (MSE)
minimization [23]. In addition, to handle the non-concavity
of the harvested energy function, we derive its global lower
bound by exploiting the convexity of the harvested energy
function [22], [24]. As a result, we propose a numerical it-
erative algorithm based on alternating optimization (AO) to
obtain the optimal precoders for the objective maximization.
We also provide the convergence and computational com-
plexity analysis of the proposed method. By numerical sim-
ulations, we study the convergence of the proposed method
and investigate the trade-off between the SE and harvested en-
ergy in multicell SWIPTwireless networks. It is important to
remark that the multi-objective optimization which is similar
to our approach was investigated in [20]. However, there are
several key differences between thework in [20] and our study
in the present paper. First, reference [20] studied the single-
cell model while our work focuses on the multicell system
model. Different from the single cell scenario in which there

exists only (intra-cell) inter-user interference, the multicell
models exhibit the additional inter-cell interference. Thus,
the interference management in multicell systems is more
complicated than that in single cell models. As a result,
the precoding designs to suppress interference and to max-
imize the sum-rate in multicell systems are more involved
and more challenging due to the nonlinearly decoupling of
the precoding strategies of base stations in cells. Second,
reference [20] focused on designing the transmit covariance
matrices by using the majorization-minimization method to
design the transmit covariance matrices. In contrast, our pa-
per focuses on directly designing of precoding matrices by
the alternating optimization algorithm.

The remainder of the paper is organized as follows.
In Sec. 2, we introduce the signal and system models of mul-
ticell MU-MIMO SWIPT networks and, then, formulate the
precoding design as an optimization problem. In Sec. 3, we
derive the iterative algorithm to obtain the optimal precoders.
Section 4 provides numerical simulation results. Finally, the
conclusions are given in Sec. 5.

Notations: Matrices (vectors) are represented by bold-
face upper (lower) case letters. The Hermitian transposition,
trace and determinant of matrix X are denoted by XH, 〈X〉,
and |X|, respectively. I is an identity matrix with an appro-
priate dimension. E(.) represents an expectation operation.
A complex Gaussian random vector x with mean x̄ and co-
variance Rz is denoted by x ∼ CN(x̄,Rx).

2. System Model and Problem
Formulation
We consider a downlink transmission system of a clus-

ter of L cells as depicted in Fig. 1 in which the BS in cell `,
denoted by BS`, ` ∈ L = {1, . . . ,L} is equipped M` transmit
antennas. The number of users in cell ` is K` . UE k in cell
` referred to as UE`,k, k ∈ K` = {1, . . . ,K`} is equipped
N`,k antennas. For each time slot, BS` can support S` users
(S` ≤ K`) in its coverage for data transmission. To prolong
the battery lifetime, the idle users can harvest energy fromRF
signals. The sets of selected and unselected users in cell ` for
each time slot are denoted by Π` = {π`(1), . . . , π`(S`)} and
Φ` = {φ`(1), . . . , φ`(K` − S`)}, respectively. It is assumed
that Π` ∩ Φ` = ∅ and Π` ∪ Φ` = K` , which means that
each user operates either as an information decoding receiver
(IDR) or as an EH receiver (EHR).

Let s`,k ∈ Cd` ,k×1 be d`,k independent data streams
which are transmitted from BS` to UE`,k . Without loss
of generality, we assume that E

(
s`,k sH

`,k

)
= Id` ,k and

E
(
s`,k sH

i, j

)
= 0 for (`, k) , (i, j). BS` uses the precoding

matrix V`,k ∈ C
M`×d` ,k to linearly process the data streams

of UE`,k . For compact notation, we denote the set of all
precoding matrices by V = {V`,k}`∈L,k∈K` .
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Fig. 1. Systemmodel of downlink multicell MU-MIMO SWIPT
networks with IDRs and EHRs.

We consider the flat-fading channels in which the
MIMO channel matrix from BSi to UE`,k is denoted by
H`,k ,i ∈ C

N` ,k×Mi . The channel coefficients accounts for
both Rayleigh fading and path loss. We assume that the ideal
CSI is available at the BSs and users [4, 5, 22]. As discussed
in [26], [25], the multicell coordination can be divided into
three categories: interference aware, joint processing and
transmission, and coordinated beamforming. In this work,
we focus on coordinated beamforming in which each BS can
collect and pass the CSI associated its users to a central unit
(which is connected to all the BSs via reliable high-speed
channels) to design the precoding matrices [4]. We also re-
mark that perfect CSI is difficult to obtain in practice and,
then, the result in this paper provides the performance bench-
mark for imperfect CSI scenarios.

The received signal y`,π` (k) ∈ C
N` ,π` (k)×1 at the selected

UE`,π` (k) is given by

y`,π` (k) = H`,π` (k),` V`,π` (k) s`,π` (k)

+

S∑̀
s=1,s,k

H`,π` (s),` V`,π` (s) s`,π` (s)

+

L∑
i=1,i,`

Si∑
s=1

H`,π` (k),i Vi,πi (s) si,πi (s) +n`,π` (k)

(1)

where n`,k ∼ CN(0, σ2
`,k

I) is additive white Gaussian noise
at UE`,k . It is assumed that noise is independent with the
transmitted signals. By treating interference as noise, the
achievable rate of UE`,π` (k) from (1) is given by

R`,π` (k)(V) = log
���IN` ,π` (k)

+ H`,π` (k),` V`,π` (k)V
H
`,π` (k)

HH
`,π` (k),`

J−1
`,π` (k)

��� (2)

where

J`,π` (k) =
∑

(i,s),(`,k)

H`,π` (k),i Vi,πi (s)V
H
i,πi (s)

HH
`,π` (k),i

+ σ2
`,π` (k)

Id` ,π` (k)

(3)

is the covariance matrix of interference-plus-noise at the se-
lected user π`(k). Then, the SR of the network is

Rsum(V) =
L∑̀
=1

S∑̀
s=1
R`,π` (s)(V). (4)

Inspired by the idea of [18], while the selected users re-
ceive information data from its associated BS, the unselected
users can harvest power to recharge their batteries for the
lifetime extension. The received signal y`,φ` (u) ∈ C

N` ,φ` (u)×1

at the unselected user φ`(u) in cell ` is given by

y`,φ` (u) =
L∑
i=1

Si∑
s=1

H`,φ` (u),i Vi,πi (s) si,πi (s) +n`,φ` (u). (5)

As far as EH is concerned, the harvested energy is propor-
tional to the received power at the baseband signals [12], [18].
Therefore, from (5), by ignoring noise power the harvested
power at UE`,φ` (u) can be defined by

Q`,φ` (u)(V) = ζ`,φ` (u)
L∑
i=1

Si∑
s=1

〈
H`,φ` (u),i Vi,πi (s)

VH
i,πi (s)

HH
`,φ` (u),i

〉 (6)

where ζ`,φ` (u) accounts for the energy conversion efficiency
which represents the loss in converting the harvested energy
to electrical energy at the energy transducers of UE`,φ` (u).
Then, the total harvested energy in the multicell network is
computed by

Qsum(V) =
L∑̀
=1

K`−S`∑
u=1
Q`,φ` (u)(V). (7)

This paper aims at designing the precoders to simulta-
neouslymaximize the overall network data rate and harvested
energy. Notice that to maximize the harvested energy at the
EHRs, the power of the received signal at EHRs must in-
crease and, then, interference to the IDR can increase which
makes the degradation of the achievable SR. This means
that the SR and SHE maximization are conflicting objec-
tives. To investigate the trade-off between two objectives, we
formulate the precoding design problem as multi-objective
optimization. It should be noted that multi-objective func-
tions of SR and SHE maximization can be transformed into
a single-objective optimization problem by using weighted
sum methods [20], [21]. Thus, our design problem is formu-
lated as an optimization problem in which the objective is to
maximize the weighted sum of the SR and the SHE subject
to the transmit power constraints at each BS. The design of
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interest is mathematically formulated as

max
V

α
Rsum(V)
R0

+ (1 − α)
Qsum(V)
Q0

(8a)

s.t.
S∑̀
k=1

〈
V`,π` (k)V

H
`,π` (k)

〉
≤ Pt` , ` ∈ L (8b)

where the factors R0, Q0 are used to normalize the SR and
SHE into the same range. Pt` is a transmit power budget at
BS` . 0 ≤ α ≤ 1 is the trade-off parameter which controls the
priority between the SR and SHE in the objective function.

3. Proposed Algorithm Derivation
The objective function in (8a) is nonconcave and, thus,

it renders mathematical difficulties to find the optimal pre-
coders. In this section, we derive an iterative algorithm to
solve problem (8).

3.1 User Selection Strategy
With regard to the user selection strategies, there are two

conventional performance metrics, namely location-based
selection and channel-gain-based selection [25]. In the for-
mer scheme, the BSs select users which have the smallest
distance to the BSs while in the latter scheme the BSs se-
lect the users which have the highest channel strengths. The
channel-gain-based selection schemes can provide better SR
performance than the location-based selection. More re-
cently, the authors in [26] proposed a user selection strat-
egy for multicell systems based on the two linear precod-
ing schemes namely, distributed zero-forcing and distributed
virtual signal-to-interference-plus-noise ratio. Although the
user selection introduced in [26] can provide superior sum-
rate performance, the selected users are relied on the struc-
tures of the precoding techniques. In this paper, we aim at
designing the precoders to optimize the multi-objectives of
the sum-rate and harvested energy and, thus, we decouple
the user selection from the precoding designs. Therefore,
we adopt the channel-gain-based selection scheme as the
scheduling metric [4], [25]. The scheduling metric for user
selection is defined as

M`,k =
〈
H`,k ,` HH

`,k ,`

〉
. (9)

In each transmission time slot, BS` selects a set of S` users
based on S` largest values of Mk ,` from all users in its cell.

3.2 Optimization Algorithm Derivation
Given the selected users, the design objective is to si-

multaneously maximize the SR and SHE in (8). It can be
seen that neither SR nor SHE is a concave function and, thus,
problem (8) is not a convex optimization problem. There-
fore, it is mathematically challenging to obtain the optimal
solutions to problem (8). To make problem (8) amenable, we
exploit the connection between the MSE minimization and
achievable data rate [23].

LetU`,π` (k) ∈ C
N` ,π` (k)×d` ,π` (k) be a receive filter matrix

which is applied to decode the desired signals at UE`,π` (k) to
yield

s̃`,π` (k) = UH
`,π` (k)

y`,π` (k). (10)

The MSE matrix for UE`,π` (k) is given by

E`,π` (k) = E
[ (

s̃`,π` (k) − s`,π` (k)
) (

s̃`,π` (k) − s`,π` (k)
)H

]
= σ2

`,π` (k)
UH
`,π` (k)

U`,π` (k) + I + UH
`,π` (k)

×(
L∑
i=1

Si∑
s=1

H`,π` (k),i Vi,πi (s)V
H
i,πi (s)

HH
`,π` (k),i

)
U`,π` (k)

− UH
`,π` (k)

H`,π` (k),` V`,π` (k) − VH
`,π` (k)

HH
`,π` (k),`

U`,π` (k).

(11)
Then, the minimization of MSE can be obtained at the opti-
mal receive matrix U`,π` (k) given by

Uopt
`,π` (k)

=

(
L∑
i=1

S∑
s=1

H`,π` (k),i Vi,πi (s)V
H
i,πi (s)

HH
`,π` (k),i

+σ2IN` ,π` (k)
)−1

H`,π` (k),` V`,π` (k).

(12)

The derivations of (11) and (12) are provided in Appendix A.
Substitution of Uopt

`,π` (k)
into MSE matrix (11) yields

Emmse
`,π` (k)

= IN` ,π` (k) − VH
`,π` (k)

HH
`,π` (k),`

Uopt
`,π` (k)

, (13)

which can be equivalently rewritten as

Emmse
`,π` (k)

=
(
IN` ,π` (k)

+H`,π` (k),` V`,π` (k)V
H
`,π` (k)

HH
`,π` (k),`

J−1
`,π` (k)

)−1
.

(14)

Comparing (14) and (2), the relationship between MSE and
SR of UE`,π` (k) can be established as

R`,π` (k)(V) = log
����(Emmse

`,π` (k)

)−1
���� . (15)

Next, to tackle the difficulty associated with non-
concavity of the achievable rate function, we use the fol-
lowing inequality [23]

R`,π` (s)(VVV) ≥ f`,π` (s)(V,U,W) (16)

and, thus,
Rsum(V) ≥ R̂sum(V,U,W) =

L∑̀
=1

S∑̀
s=1

f`,π` (s)(V,U,W) (17)

where
f`,π` (k)(V,U,W) , log

��W`,π` (k)

��
−

〈
W`,π` (k)E`,π` (k)

〉
+ d`,π` (k)

(18)

and W`,π` (k) ∈ C
d` ,π` (k)×d` ,π` (k) is an auxiliary positive defi-

nite matrix variable. We have defined U = {U`,k}`∈L,k∈K`
and W = {W`,k}`∈L,k∈K` for notation simplicity. It can be
shown that the equality of (16) holds at Uopt

`,π` (k)
given in (12)

and
Wopt

`,π` (k)
=

(
Emmse
`,π` (k)

)−1
. (19)
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Next, to handle the non-concavity of the harvested en-
ergy function, we exploit its convexity. Given feasible ma-
trices V(n)

i,πi (k)
, the convex quadratic function of the harvested

energy is lower-bounded by its minorant as follows [24], [22]

Q`,φ` (u)(V) ≥ Q
(n)

`,φ` (u)
(V) (20)

where

Q
(n)
`,φ` (u)

(V) = ζ`,φ` (u)
L∑
i=1

Si∑
s=1

〈
H`,φ` (u),i V(n)

i,πi (s)

V(n)H
i,πi (s)

HH
`,φ` (u),i

〉
+

ζ`,φ` (u)

L∑
i=1

Si∑
s=1

〈
V(n)H
i,πi (s)

HH
`,φ` (u),i

H`,φ` (u),i(
Vi,πi (s) − V(n)

i,πi (s)

)〉
+

ζ`,φ` (u)

L∑
i=1

Si∑
s=1

〈(
Vi,πi (s) − V(n)

i,πi (s)

)H
HH
`,φ` (u),i

H`,φ` (u),i V(n)
i,πi (s)

〉
.

(21)
Note that Q`,φ` (u)(V(n)) = Q

(n)

`,φ` (u)
(V(n)). Thus, the lower

bound of the SHE at iteration n is

Qsum(V) ≥ Q̂(n)sum(V) =
L∑̀
=1

N`−S`∑
u=1
Q
(n)

`,φ` (u)
(V). (22)

Thus, we can solve the nonconvex optimization problem (8)
by iteratively solving the following optimization problem

max
{V,U,W}

α
R̂sum({V,U,W})

R0
+ (1 − α)

Q̂
(n)
sum(V)
Q0

(23a)

s.t. (8b) (23b)

It can be observed that the objective function in (23) is not
concave with respect to three set of variables {V,U,W}, but
it is concave over each set of variables when the other two
sets are fixed. Thus, an AO approach is applicable to iter-
atively solve (23). More specifically, at each iteration, we
alternatively find the three blocks of variables as follows:

• Fix {V,W} and update U. Finding U to maximize the
object function in (23) is equivalent to minimize the
MSE and, thus, U can be found from (12).

• Fix {V,U} and update W. It can be shown that problem
(23) is a convex optimization with variable W. Thus
by setting the first derivation the object function in (23)
with respect to W to zero, we can obtain W from (19).

• Fixed {U,W} and update V. It can be observed that
the objective function in (23) is a concave function with
respect to variable V. Thus, update V by solving the
problem (23) using convex optimization solvers, e.g.,
CVX [27].

To further clarify the proposed algorithm, we summarize the
detailed procedure to solve problem (8) in Algorithm 1.

3.3 Convergence and Computational
Complexity Analysis

Let us define the objective functions in (8a) and
(23a) as f (V) and f̂ (V,W,U), respectively. By denoting
(V(n+1),W(n+1),U(n+1)) is the solution after iteration (n + 1)
in Algorithm 1, we have

f (V(n+1))≥ f̂ (V(n+1),W(n+1),U(n+1)) (24a)

≥ f̂ (V(n),W(n),U(n)) (24b)

= f (V(n)) (24c)

where inequality (24a) holds since f̂ (V,W,U) is
a lower bound of f (V), inequality (24b) holds because
(V(n+1),W(n+1),U(n+1)) is the optimal solution to problem
(23) at iteration (n + 1), and (24c) is true due to the fact that
equalities (17) and (22) holds at (V(n),W(n),U(n)). Thus, the
objective function f (V) of problem (8) is not decreasing over
iterations. In addition, with given transmitted power con-
straints, the objective function is upper bounded. Therefore,
the convergence of Algorithm 1 is guaranteed.

Algorithm 1: Proposed iterative algorithm for
the precoding design.
1 Initialization: Start with feasible precoding

matrices
{
V(0)
`,π` (k)

}
and set n = 0;

2 repeat
3 Compute

{
U(n)
`,π` (k)

}
using (12) ;

4 Compute
{
W(n)

`,π` (k)

}
using (19) ;

5 repeat
6 Given

{
V(n)
`,π` (k)

}
,
{
U(n)
`,π` (k)

}
and{

W(n)
`,π` (k)

}
, solve (23) using CVX to

obtain
{
V(∗)
`,π` (k)

}
;

7 Update
{
V(n)
`,π` (k)

}
=

{
V(∗)
`,π` (k)

}
;

8 until convergence;
9 Update n = n + 1;

10 until convergence;
Result: Optimal solutions {Vopt

`,π` (k)
}.

Now, we study the computational complexity of
the proposed iterative algorithm. The major computa-
tional complexity of Algorithm 1 includes the complexity

O

(
L∑̀
=1

S∑̀
k=1

N3
`,π` (k)

)
for calculating U, O

(
L∑̀
=1

S∑̀
k=1

d3
`,π` (k)

)
for obtaining W, and O ©­«Nmax

(
L∑̀
=1

S∑̀
k=1

M`d`,π` (k)

)3ª®¬ solv-

ing the convex optimization (23) to obtain V where
Nmax is an average iteration for the inner loop in Algo-
rithm 1 to be converged [14], [23]. In numerical simu-
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lations, Nmax is a few tens of iterations. Thus, the to-
tal computational complexity for each iteration is about

O
©­«

L∑̀
=1

S∑̀
k=1

(
N3
`,π` (k)

+ d3
`,π` (k)

)
+ Nmax

(
L∑̀
=1

S∑̀
k=1

M`d`,π` (k)

)3ª®¬
which reveals the low computational complexity of
Algorithm 1.

4. Simulation Results
In this section, we evaluate the effectiveness of our

iterative algorithm and investigate the trade-off between
the SR and SHE performance via numerical simulation re-
sults. In simulations, the considered systems consist of
three 40m radius cells. All BSs transmit 2 data streams
to each UE (d`,k = d = 2). Each UE has 2 antennas
(N`,k = N = 2). The users are randomly placed in each cell.
Assume that path loss at distance r (m) between a BS and
an UE is given by 31.7 + 27.6 log10(

r
r0
) dB where r0 = 1

(m) is a reference distance [19]. The noise power is set as
PN = σ2

`,k
= −99 dBm [19]. For the sake of simplicity,

the energy conversion efficiency ζ`,φ` (u) = 1. The transmit
power budget of all BSs are assumed to be equal Pt` = Pt .
We denote the system configuration of K` = K users in
each cell in which there are S` = S IDRs and K − S EHRs
as {K,S,K − S}. All numerical simulations are conducted
in MATLAB on Intel Core i7-6500U CPU 2.6GHz with
RAM 16GB. To obtain the optimal precoders, the convex
optimization problems (23) are solved by the CVX package
with the internal solver SDPT3 [27].

Example 1: This example investigates the convergence
behaviors of iterative Algorithm 1 for the system model
{4,2,2} and eachBS equippedwith 4 antennas (M` = M = 4)
and Pt = 30 dBm. The normalization factors are set as
R0 = 70 bps/Hz and Q0 = 1.5PN × 107. Figure 2 depicts
the evolution of the objective function f (V(n)) over iterations
for a given random channel realization. It can be observed
that for different values of α, the objective functions are
not decreasing over iterations and the objective functions are
converged within a less than 50 iterations. The similar con-
vergence characteristics can be observed for the other system
models considered below and, thus, we do not provide the
simulation results for the other models.

Example 2: In this example, we investigate the trade-
offs between the SR and SHE for the multicell MU-MIMO
SWIPT networks with various configuration settings. We
carried out 100 Monte Carlo runs with random locations of
users to obtain average results. Remark that for α = 1 the
multi-objective optimization problem (8) reduces to the SR
maximization and, thus, the SR is highest and the SHE is
lowest. In contrast, the systems will offer the highest SHE
and lowest SR for α = 0. Thus, in the following, to normalize
the SR and SHE (8), R0 is set as the highest achievable SR
of (8) at α = 1 and Q0 is the highest SHE at α = 0.
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Fig. 2. Convergence behaviors of iterative Algorithm 1.
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We consider the system configurations of {4,2,2} and
{4,3,1} in which each BS is equipped with 4 transmit an-
tennas. Figure 3 illustrates the achievable trade-off curves
between the SR and SHE which are obtained by varying the
trade-off parameter α . The SR from Fig. 3 is monotonically
reduced when the SHE is increased. This indicates that the
SR and SHEmaximization objectives are conflicting. As can
be seen from Fig. 3, the system achieves the highest SR at
α = 1 where the achievable SHE is lowest. On the other
hand, the system obtains the lowest SR when the SHE is
highest at α = 0.

The similar results can be observed from Fig. 4 for the
system configurations of {8,4,4} and {8,5,3} with each BS
equipped with 8 antennas. Thus, the trade-off parameter α
in problem (8) provides the flexibility to switch between the
SE and harvested energy efficiency. Additionally, the SR and
SHE region from Figs. 3 and 4 expands with the increase of
Pt , thismeans, the amount of both SR and SHEbecome larger
if the transmit power budget is higher. In addition, when the
number of IDRs increases (i.e, the number of EHRs is re-
duced) the achievable SHE is significantly degraded while
there is only a slight increase in the achievable SR (it can be
observed in Figs. 3 and 4 at points α = 1 and α = 0). The
reason is that the optimal precoder solutions tend to allocate
more power to the user with the better channel-gain condi-
tion. Thus, the increase in the number of IDRs can lead to
an insignificant increase in the achievable sum-rate while the
reduction in the number of EHRs can significantly degrade
the achievable SHE.

5. Conclusion
We have presented an efficient iterative algorithm for

the precoding design to maximize simultaneously two per-
formance metrics, namely SR and SHE, in multi-cell MIMO
SWIPT systems under transmit power constraints at each BS.
We have exploited the relationship between MSE minimiza-
tion and achievable data rate to transform the SR function
into concave one in each set of variables, and we have also
derived the concave minorant of the SHE function. Then,
we have developed an efficient iterative algorithm with low
complexity and guaranteed convergence. The simulation re-
sults have verified the fast convergence of the proposed it-
erative algorithm. In addition, the simulation results have
provided useful insights into the trade-offs between the SR
and SHE for various transmit power levels and the different
number of users.
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Appendix A: Derivations of
Equations (11) and (12)

The mean-squared-error (MSE) matrix for UE`,π` (k) is
given by

E`,π` (k) = E
[ (

s̃`,π` (k) − s`,π` (k)
) (

s̃`,π` (k) − s`,π` (k)
)H

]
= E

[(
UH
`,π` (k)

y`,π` (k) − s`,π` (k)
)

(
UH
`,π` (k)

y`,π` (k) − s`,π` (k)
)H

]
(A1)

which can be rewritten as in (A2) (at the top of next page).

With the independence assumptions of the transmitted
signals and noise, we have E

[
s`,k sH

i, j

]
= 0 for (`, k) , (i, j),

E
[
s`,k sH

`,k

]
= I, E

[
s`,k nH

i, j

]
= 0, E

[
n`,knH

i, j

]
= 0 for

(`, k) , (i, j) and E
[
n`,knH

`,k

]
= σ2

`,k
I. Then, the MSE

matrix in (A2) becomes

E`,π` (k) = UH
`,π` (k)

H`,π` (k),` V`,π` (k)V
H
`,π` (k)

HH
`,π` (k),`

U`,π` (k)

+ UH
`,π` (k)

∑
(`,k),(s,i)

H`,π` (k),i Vi,πi (s)V
H
i,πi (s)

HH
`,π` (k),i

U`,π` (k)

− UH
`,π` (k)

H`,π` (k),` V`,π` (k) − VH
`,π` (k)

HH
`,π` (k),`

U`,π` (k)

+ σ2
`,π` (k)

UH
`,π` (k)

U`,π` (k) + I`,π` (k)
(A3)

which can be rewritten as (11).
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E`,π` (k) = E
©­«UH

`,π` (k)

©­«H`,π` (k),` V`,π` (k) s`,π` (k) +
∑

(`,k),(s,i)

H`,π` (k),i Vi,πi (s) si,πi (s) +n`,π` (k)
ª®¬ − s`,π` (k)

ª®¬
×

©­«UH
`,π` (k)

©­«H`,π` (k),` V`,π` (k) s`,π` (k) +
∑

(`,k),(s,i)

H`,π` (k),i Vi,πi (s) si,πi (s) +n`,π` (k)
ª®¬ − s`,π` (k)

ª®¬
H

(A2)

The MSE for UE`,π` (k) is defined as MSE`,π` (k) =〈
E`,π` (k)

〉
. An optimal receive matrix U`,π` (k) which

minimizes the MSE can be obtained by solving
∂

〈
E`,π` (k)

〉
/∂U∗

`,π` (k)
= 0. From (11), we have

∂
〈
E`,π` (k)

〉
∂U∗

`,π` (k)

=

L∑
i=1

Si∑
s=1

H`,π` (k),i Vi,πi (s)V
H
i,πi (s)

HH
`,π` (k),i

U`,π` (k)

−H`,π` (k),` V`,π` (k) + σ
2
`,π` (k)

U`,π` (k) = 0
(A4)

which results in (12).


