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Abstract 
This paper explores the relationship between inhabitants’ 

presence, the installed power for office equipment, and the 

resulting electrical energy use. This exploration is based 

on long-term observational data obtained from a continu-

ously monitored office area in Vienna, Austria. The find-

ings facilitate the formulation of both simplified and prob-

abilistic models to estimate annual and peak office plug 

loads. Aside from a general comparison of the perfor-

mance of simple and stochastic models, the present contri-

bution focuses on the question if and to which extent con-

sideration of the diversity of the inhabitants influences the 

reliability of plug load predictions. 

1. Introduction

Plug loads denote office buildings' energy require-
ments due to computers, peripheral devices, tele-
phones, etc. Plug loads can constitute more than 
20 % of primary energy used in office buildings, and 
this ratio has been suggested to further increase in 
the future (Roth et al., 2008). Hence, simulation tools 
need reliable methods to estimate the magnitude of 
plug loads. Compared to a relatively broad range of 
research efforts regarding inhabitants' presence 
models (Wang et al., 2016; Tahmasebi and Mahdavi, 
2017; Feng et al., 2015), only few studies have gone 
beyond the use of typical profiles of plug loads to 
provide more advanced models of plug loads for 
building simulation (e.g. Gunay et al., 2016; Gandhi 
and Brager, 2016; Menezes et al., 2014). 
Given this context, we have been working on devel-
oping methods to compute both aggregated annual 
and detailed time-dependent electrical energy use 
patterns. In the present contribution, we specifically 

focus on the problem of the diversity of the inhabit-
ants (Mahdavi and Tahmasebi, 2015) and its impli-
cations for plug loads modelling. 

2. Method

Previously, we have suggested that plug loads in 
office buildings could be estimated based on the 
knowledge of: i) installed equipment power and ii) 
presence patterns of inhabitants (Mahdavi et al., 
2016). The corresponding findings are based on data 
from an office area (with both single-occupancy and 
open-plan office zones) in a University building in 
Vienna, Austria (see Table 1). For the purposes of 
this paper, high-resolution data (monitored pres-
ence and plug loads) collected over a three-year 
period (2013 to 2015) were used to develop and eval-
uate the plug loads models. 

2.1 Simplified Approach 

We hypothesised that plug load fraction F (ratio of 
actual plug load to the installed equipment power) 
of occupant j at time interval i is a function of pres-
ence probability p. A linear version of this relation-
ship could be formulated as follows (with a and b as 
empirically grounded coefficients): 
Fj,i = a.pj,i + b    (1) 
Consequently, plug loads E for an office with m 
inhabitants over n intervals with a total length of T 
could be computed using Equation 2. Note that the 
coefficients a and b in equation 1 may be specified in 
an aggregated manner (i.e. for the entire popula-
tion), or – given that sufficient empirical data is 
available – for individual office inhabitants. 
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Table 1 – Selected office zones with information on inhabitants 
(denoted as U1 to U7), areas, and installed equipment power. 

Space Inhabitants 
Installed 
power [W] 

Area 
[m2] 

Open-
plan 

U1, U2, U3, U4 640 43 

Office 1 U5 180 19 

Office 2 U6 90 34 

Office 3 U7 130 17 

2.2 Stochastic Approach 

To compute plug loads stochastically, we utilized 
three specific Weibull distributions to capture: 
1) Plug load fractions during occupied periods or

intermediate absences shorter than one hour;
2) Plug load fractions during intermediate

absences longer than one hour;
3) Plug load fractions outside working hours.
A Weibull distribution is generally formulated as 
using Equation 3, where λ is the scale parameter and 
k is known as the shape parameter. Plug load frac-
tions are picked randomly via inverse transform 
sampling method, whenever the occupancy state 
falls within one of the above possibilities. 

(3) 

Electrical energy use can thus be calculated in a 
manner similar to the aforementioned simplified 
model (see Equation 2). Note that, to use this model, 
the occupancy states (occupied or vacant) at each 
time interval need to be provided as input. In the 
current study, we used a presence model (Page et 
al., 2008) that uses a profile of presence probability 
and average parameter of mobility (µ: the ratio of 
state change probability to state persistence proba-
bility). The latter was set to 0.1 (O’Brien et al., 2016). 
As output, the model produces a set of randomly 
generated non-repeating Boolean occupancy pro-
files. 
As with the linear regression model, we provided 
the stochastic model with presence profiles for 
weekdays and weekends, either averaged across all 
occupants or for individual inhabitants, depending 
on the diversity representation approach. In this 
case, too, the stochastic representation can be real-

ised both for the whole population and for individ-
ual inhabitants. 

2.3 Representation of Diversity 

To address diversity representation among inhabit-
ants, we used empirical data (from the year 2014) to 
generate models in two different ways: 
i) occupancy and plug load profiles averaged across
all occupants, and ii) individual occupancy and 
plug load profiles. Using 2014 data, Table 2 gives the 
resulting simple plug load model's coefficients 
(slope and intercept) for the individual inhabitants 
as well as in aggregate. Table 3 provides the coeffi-
cients (scale and shape) of the stochastic model’s 
Weibull distributions based on individual and 
aggregate presence and plug load data. 

2.4 Simulated Alternatives 

A non-random relationship can be shown to exist 
between inhabitants' presence, their respective 
installed equipment power, and the resulting elec-
trical energy use (Fig. 1). A stronger correlation can 
be revealed considering individual inhabitants as 
opposed to the population as a whole (Fig. 2). This 
may be interpreted as the consequence of con-
sidering inhabitants' diversity with regard to the 
electrical energy used for equipment. The difficul-
ties associated with obtaining necessary observa-
tional data on inhabitants' diversity highlight the 
relevance of the initially addressed research ques-
tion: To which extent can the calculated values of 
standard performance indicators such as annual 
and peak office plug loads be influenced by inter-
inhabitant diversity? 
To systematically explore this question, we used 
data from the year 2014 to calibrate models of 
annual and peak plug loads for the aforementioned 
office area. The calibrated model was used to pre-
dict plug loads for the years 2013 and 2015. Thereby, 
both simplified and stochastic models were gener-
ated with and without consideration of diversity 
(Table 4). Moreover, to put the model’s performance 
in a more familiar context, we provided, for the 
same office area, the electrical energy use estima-
tions based on plug load profiles from ASHRAE 
90.1. 
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Table 2 – Coefficients of the simple plug loads model  

Inhabitants Slope (a) Intercept (b) 

U1 0.55 0.05 

U2 0.76 0.06 

U3 0.25 0.21 

U4 0.33 0.07 

U5 0.73 0.13 

U6 0.72 0.04 

U7 0.36 0.08 

All 0.53 0.09 

 

Table 3 – Parameters of the stochastic model’s Weibull 
distributions  

Inhab-
itants 

Weibull 1 Weibull 2 Weibull 3 

λ k λ k λ k 

U1 0.50 2.05 0.29 1.20 0.07 1.30 

U2 0.46 2.52 0.30 1.24 0.07 1.28 

U3 0.35 1.62 0.24 1.51 0.18 1.45 

U4 0.35 1.67 0.27 1.60 0.22 2.48 

U5 0.51 1.80 0.41 1.12 0.12 0.99 

U6 0.57 4.62 0.42 1.95 0.20 1.07 

U7 0.41 2.00 0.21 1.09 0.09 1.14 

All 0.56 1.89 0.38 1.32 0.14 1.07 

 

Table 4 – Explored modelling scenarios with information regarding 
the modelling technique (simplified versus stochastic) and inhabit-
ants' representation (aggregate versus diverse) 

Modelling 
scenario 

Modelling 
technique 

Diversity 

S1_A Simplified No 

S1_D Simplified Yes 

S2_A Stochastic No 

S2_D Stochastic Yes 

S3_A ASHRAE profile No 

 
Fig. 1 – The relationship between plug load fraction and presence 
probability for all office inhabitants 

 
 

 
Fig. 2 – The relationship between plug load fraction and presence 
probability for individual office inhabitants 

The comparison of computed annual and peak plug 
load values with observational data was expressed 
in terms of Relative Errors. For interval-by-interval 
comparison of monitored and calculated energy 
use, standard statistical indicators, namely Root 
Mean Square error (RMSE), Normalised Root Mean 
Square Error (NRMSE), and Mean Bias Error (MBE) 
were considered. To compare the distribution of 
predicted and monitored plug loads, the Jensen–
Shannon divergence metric was used (for details see 
Mahdavi et al., 2016). This metric expresses the dis-
tances between two probability distributions and it 
is bounded between 0 and ln (2). 
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3. Results and Discussion 

Table 5 provides a summary of the monitored and 
calculated total and peak equipment-related electri-
cal energy use in the selected office area for the 
years 2014, 2013, and 2015, together with the values 
of the aforementioned error statistics. 
The simplified method provides reasonable predic-
tions of annual plug loads (Fig. 3). However, the 
probabilistic plug load model performs better than 
the simplified model in terms of peak load (Fig. 4) 
and the distribution of predictions. The latter con-
clusion can be inferred from the lower values of JSD 
for the probabilistic model (Table 5). Independently 
of the diversity treatment, the non-stochastic model 
displays a slightly better performance in predicting 
time interval plug loads (see MBE, RMSE, and 
NRMSE values in Table 5). 
As to the primary question of the present treatment, 
namely the diversity consideration, the results may 
be interpreted as follows. Inclusion of diversity does 
not improve the predictive performance of the mod-
els with regard to annual and peak plug loads (see 
Fig. 3 and 4, as well as Table 5). Indeed, the inclusion 
of diversity has either very little impact on the 
predicted value of the energy use indicators or it 
even slightly worsens the prediction performance. 
The summary representation of Table 6 illustrates 
this observation in simple terms. It indicates if the 
inclusion of diversity in plug load modelling im-
proves the results or not. Thereby, the values of the 
statistics REa (Relative Error of annual load predic-
tions), REp (Relative Error of peak load predictions), 
JSD, MBE, RMSE, and NRMSE were taken into con-
sideration. Aside from rather small improvements 
for simplified model's results for 2013, the inclusion 
of diversity seems to worsen, rather than improve, 
the results. Notably, the intuitively expected posi-
tive effect of such inclusion on REp and JSD values 
is not supported by the results. 
 

4. Conclusion 

This contribution explored the performance of sim-
ple and stochastic office plug loads models. 
Thereby, the focus was on the implications of inhab-
itants' diversity. The results suggest the following: 
- Plug load fractions strongly correlate with the 

inhabitants' presence probability. 
- Both simple and probabilistic can exploit this 

correlation to provide reasonable predictions of 
annual peak plug loads. The stochastic model 
however, more reliably predicts peak plug 
loads. 

 

 
Fig. 3 – Annual plug load obtained via different modelling approach-
es, along with the respective monitored values 

 

 

Fig. 4 – Peak plug load obtained via different modelling approaches, 
along with the respective monitored values 
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Table 5 – Statistical comparison of the monitored plug loads for the years 2013 to 2015 with the respective calculations according to various 
modelling scenarios: S1_A (simple model, average occupant); S1_D (simple model, individual occupants); S2_A (stochastic model, average 
occupant); S2_D (stochastic model, individual occupants) 

Model 
Run 

period 

Run period sum Run period peak Distribution Time interval values 

Value 
[kWh] 

RE 
[%] 

Value 
[W] 

RE 
[%] 

JSD 
[-] 

MBE 
[W] 

RMSE 
[W] 

NRMSE 
[%] 

Measured 2014 1662.7 0.0 861.7 0.0 0.00 0.0 0.0 0.0 

S1_A 2014 1540.8 -7.3 411.6 -52.2 0.43 -13.9 119.6 14.7 

S1_D 2014 1541.2 -7.3 374.3 -56.6 0.46 -13.9 120.6 14.8 

S2_A 2014 1524.5 -8.3 672.5 -22.0 0.30 -15.8 131.3 16.1 

S2_D 2014 1620.5 -2.5 691.9 -19.7 0.36 -4.8 131.7 16.2 

Measured 2013 1543.4 0.0 861.9 0.0 0.00 0.0 0.0 0.0 

S1_A 2013 1484.7 -3.8 374.7 -56.5 0.53 -6.7 99.8 12.5 

S1_D 2013 1596.5 3.4 380.3 -55.9 0.52 6.1 99.7 12.5 

S2_A 2013 1514.2 -1.9 669.4 -22.3 0.32 -3.3 121.2 15.2 

S2_D 2013 1606.8 4.1 673.6 -21.8 0.39 7.2 122.4 15.3 

Measured 2015 1255.0 0.0 770.6 0.0 0.00 0.0 0.0 0.0 

S1_A 2015 1470.5 17.2 412.2 -46.5 0.41 24.6 102.6 13.9 

S1_D 2015 1541.2 22.8 374.3 -51.4 0.46 32.7 123.1 16.7 

S2_A 2015 1469.8 17.1 667.7 -13.4 0.28 24.5 120.2 16.3 

S2_D 2015 1587.5 26.5 684.6 -11.2 0.33 38.0 124.6 16.9 

ASHRAE 90.1  - 3025.7 141.1 936.0 21.5 0.42 202.1 352.3 47.8 

 
- In the present case study, the inclusion of di-

versity (i.e. implementation of individual func-
tions for individual occupants) in the course of 
simple and stochastic prediction of annual and 
plug loads did not improve model predictions.  

- The performance differences between simple 
and stochastic plug loads was found to be 
much less important for the quality of predic-
tions when compared to the availability of 
reliable information on inhabitants' presence 
and installed plug loads. This circumstance, 
which is independent of the diversity inclusion 
issue, can be inferred from the very large devi-
ations of standard-based plug load estimations 
(see Table 5, last row). 

Table 6 – Improvement test of the values of the statistical 
indicators REa (Relative Error of annual load predictions), REp 
(Relative Error of peak load predictions), JSD, MBE, RMSE, and 
NRMSE as a result of inclusion of diversity in plug load modelling 

Statistics 
Simplified model 

Stochastic 
model 

2013 2015 2013 2015 

REa [%] Yes No No No 

REp [%] Yes No Yes Yes 

JSD [-] - No No No 

MBE [W] Yes No No No 

RMSE [W] Yes No No No 

NRMSE [%] - No No No 
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Needless to say, we do not suggest that the above 
observations generally apply, given various short-
comings of our case study – particularly in view of 
the limited magnitude of available data and the 
small number of inhabitants. Nonetheless, we be-
lieve the study does provide valuable initial obser-
vations and insights: independently of the choice of 
specific mathematical formalisms, the observed sig-
nificant correlation between plug load fractions and 
presence patters has the potential to offer a solid 
basis for developing plug load prediction models. 
Our study also suggests that, to support simulation-
based design processes, it is important to obtain 
dependable basic information regarding the nature 
of occupancy and the technical specification of the 
office equipment: The sole reliance on standard-
based procedures could be misleading. 
As to the implications of the diversity consideration 
for the prediction of annual and peak plug loads, the 
case study did not show that the inclusion of inhab-
itants' diversity is beneficial in principle.  However, 
this matter, too, requires further in-depth studies 
before ultimate conclusions can be formulated. 
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