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Abstract 
Conventional building energy simulation utilizes 

characteristic locational weather data to illustrate the 

typical operation of the modeled facility, generally to 

provide design or capital investment insight. Because of 

the uncertainty in the weather, the assumptions behind 

typical meteorological year (TMY) data tend to perform 

poorly in building energy modeling applications for real-

time control such as model predictive control (MPC) of 

passive building thermal mass. To account for weather 

uncertainty in such operational context, we present a 

strategy for creating an arbitrary number of plausible 

near-future weather scenarios via a vector autoregressive 

(VAR) time-series prediction framework. This approach 

allows us to preserve the relationships between several 

spatiotemporally interrelated weather variables, for 

example dry-bulb temperature and absolute humidity, by 

capturing the variance in the joint time-series. Results 

from several climates are presented for 24-hour 

predictions of psychrometric and solar weather variables 

for a range of samples sizes and the application to 

stochastic MPC is highlighted. 

1. Introduction: MPC for Space
Temperature Setpoints

In a perfect world, in which we had perfect forecasts 
of future weather events, a commercial building 
could be controlled by adjusting the space 
temperature setpoints and other operational 
parameters in order to both keep occupants 
comfortable and minimize either energy 
consumption or utility cost according to the 
conditions that the building will experience in the 
near future. These optimized strategies would take 
advantage of the thermal capacitance of 
construction materials (structural steel and 
concrete) and interior furnishings (e.g. system 

furniture) to store heat and release it at a later time. 
This type of control would require:  
1. A model to represent the behavior of the

building in response to weather variables
2. A mechanism for forecasting future weather

and other uncertain driving variables
Building energy modeling is common today and is 
typically employed during the design phase of a 
new construction project or during retro-
commissioning of an existing facility. 
Unfortunately, perfect weather forecasts do not 
exist. Statistical models that represent plausible 
weather forecasts have been in use for decades; the 
difference between these plausible scenarios and the 
weather events that will eventually unfold 
represents our uncertainty in using this data for 
MPC. We can attempt to account for this uncertainty 
by using a range of plausible weather scenarios to 
account for what may occur, as opposed to a single 
forecast. Here, an MPC strategy would implement a 
control strategy that performs best over the entire 
range of possibilities in an attempt to protect 
ourselves from the mismatch between forecast and 
actual weather. The established methods of 
accounting for this range of possibilities are robust 
MPC, which examines and prepares for the extreme 
events that may occur, and stochastic MPC, which 
uses random but statistically likely events instead in 
an attempt to reduce the conservatism inherent in 
robust MPC. 

2. Uncertainty Characterization

A typical energy model can be considered as a “grey 
box” representation of a building. That is, it uses 
physics based models of heat transfer phenomena 
enhanced by empirical data and statistical models to 
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represent equipment performance and other facets 
of building operation. These models are ambitious, 
attempting to capture the effects of weather, 
occupants, internal gains such as computers and 
lights, construction assemblies, stratification of air 
inside spaces, thermal mass of furnishings and 
more. Attempting to capture the behavior of so 
many features of modern buildings means that 
simplifications necessarily take place; occupants are 
modeled through immutable schedules as are lights 
and internal heat gains such as computers, weather 
is assumed to be “typical” weather rather than 
historic or forecast, air is assumed to be fully mixed 
or arbitrarily “layered”, and so on. What these 
energy models do not account for is the uncertainty 
in all of these other characteristics; the framework 
proposed here attempts to account for the 
uncertainty in weather so that these models may be 
used in a stochastic MPC context. 

2.1 TMY Data 

Energy models used for design or commissioning 
purposes typically make use of TMY weather data 
for a location reasonably close to the modeled site. 
The goal of TMY data is to represent the typical 
characteristics and patterns of local weather–it is a 
composite of many years of empirical data for the 
given location. In this case, “typical” means that 
many years (typically 30) of data are collated to 
capture a wide range of weather phenomena 
experienced by a location while still presenting an 
annual average that corresponds to the average 
long-term weather trends for that location. Because 
of this, one cannot assume that the hourly TMY 
weather data will match the actual weather at any 
given time but one can reasonably assume that the 
long-term data trends will tend to be similar to the 
actual weather.  
For engineers and architects designing buildings 
and building systems, performing a simulation 
using TMY data is sufficient to determine the 
performance impact of design decisions and to 
create arguments to justify one design over another. 
For the operation of the building, however, one 
cannot assume that TMY will match the current or 
future weather; if we would like to optimize the 
operation of our HVAC systems, we would like to 

know how weather will behave in the short-term. 
Predicting short-term weather trends is, of course, a 
famously difficult problem. 

2.2 Uncertainty with Scenarios 

The difficulty in predicting short-term weather 
trends is an uncertainty we wish to account for in 
MPC. Classically, this uncertainty might be 
represented by the extremes encountered for a 
particular location–the so called robust MPC 
framework (Kouvaritakis and Cannon, 2015). This 
however introduces a considerable amount of 
conservatism in our model; since extreme weather 
patterns are unlikely to materialize, in most 
situations we would expect that optimizing 
building operations to account for these extremes 
would mean that some savings are “left on the 
table” – meaning that there is still potential for 
further optimization.  
Instead of relying on extreme events to characterize 
a location’s short-term weather patterns, we can use 
data to develop a hypothetical weather pattern that 
is likely to occur by examining the recorded weather 
pattern leading up to the current moment. In this 
approach, we assume a future time horizon, 𝐹𝐹, for 
which we would like to optimize over as well as a 
window of time directly preceding the current time 
for which the optimization is taking place, H. The 
past time window 𝐻𝐻 represents the historical data 
that we will use to generate a likely weather 
scenario for the future time horizon 𝐹𝐹. 
The scenario approach is naturally deterministic, 
unlike other stochastic MPC strategies such as the 
use of chance constraints, for which the feasible set 
of solutions have the potential to be non-convex and 
difficult to express (Schildbach et al., 2013). Scenario 
based approaches have been shown to be an 
effective method in estimating the solution of 
nonlinear optimal control problems (Mesbah, 2015), 
which optimization problems involving buildings 
tend to be. 

3. Vector Autoregressive Framework

Because weather variables are not independent (i.e. 
dry bulb temperature has a relationship with 
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absolute humidity), any effective modeling ap-
proach used to produce a weather scenario must ac-
count for the joint variance between the modeled 
variables. Here, we use a vector autoregressive 
(VAR) model to represent this dependence. The VAR 
framework has been shown to generate useful 
weather scenarios that account for the stochastic 
nature of local weather pattern (Verdin et al., 2014). 
The VAR model can be summarized as an extension 
of the classical autoregressive time series model 
which allows explaining each variable’s evolution in 
terms of its own lags (the value of the variable at 
previous time intervals) as well as the lags of each 
additional exogenous variable assumed to be 
interrelated. To illustrate this approach, let us first 
consider an example in which two variables, say dry 
bulb temperature (𝑇𝑇) and absolute humidity (𝑊𝑊) are 
modeled as lag 1, or rather that the current value of 
these variables is only a function of their values at 
the previous observation: 

� 𝑇𝑇𝑡𝑡𝑊𝑊𝑡𝑡
� = �

𝑐𝑐1
𝑐𝑐2� + �

𝐴𝐴1,1 𝐴𝐴1,2
𝐴𝐴2,1 𝐴𝐴2,2

� � 𝑇𝑇𝑡𝑡−1𝑊𝑊𝑡𝑡−1
� + �

𝑒𝑒1
𝑒𝑒2� (1) 

Here, c1 and c2 are some constants and e1 and e2 are 
error terms. The A matrix is solved via a least 
squares minimization. The current values of 
temperature and absolute humidity are assumed to 
depend only on the values at the previous time step; 
the number of lags represent the time window used 
to create the forecast, in this example the window is 
1 hour. 

3.1 Lag Selection 

Of course, predicting future temperatures based 
solely on the value of temperature and humidity an 
hour ago are not likely to be very accurate. We 
would like to choose a number of lags that 
maximizes our confidence in the model. Following 
(Hastie et al., 2008), let us define our total prediction 
error 𝐸𝐸 as in Equation 2: 

𝐸𝐸 = 1
𝑁𝑁 
∑ 𝐿𝐿 �𝑋𝑋(𝑛𝑛), 𝑓𝑓(𝑛𝑛)�𝑁𝑁
𝑛𝑛=1  (2) 

where N is the number of samples, 𝑓𝑓(𝑛𝑛) is the fitted 
model, and L is some loss function relating the 
observed test value 𝑋𝑋(𝑛𝑛) with the prediction. Since 
the testing error will nearly always be smaller than 

the error for new predictions, it is useful to quantify 
our confidence in the model and thus how 
optimistic our testing error is. We define this 
optimism 𝑂𝑂 as: 

𝑂𝑂 = 𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸 (3) 

where 𝐸𝐸𝑖𝑖𝑖𝑖  is our in-sample error, an estimate that 
combines the prediction error with a term that 
penalizes complicated models; the justification 
being that complex models may be over-fitted to the 
training data. Two common estimates for in-sample 
error 𝐸𝐸𝑖𝑖𝑖𝑖  are Akaike’s Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC). We 
can define both criteria in terms of the final 
prediction error FPE for autoregressive models 
(Akaike, 1969), which is based on the mean squared 
error of residuals 𝑅𝑅2����(𝐴𝐴(𝑀𝑀)) in Equation 4, the VAR 
model order or number of lags 𝑀𝑀:  

𝑅𝑅2����(𝐴𝐴(𝑀𝑀))  = 1
𝑁𝑁
∑ �𝑋𝑋�(𝑛𝑛) − ∑ 𝐴𝐴𝑚𝑚

(𝑀𝑀)𝑋𝑋�(𝑛𝑛 −𝑚𝑚)𝑀𝑀
𝑚𝑚=1 �

2
𝑁𝑁
𝑛𝑛=1 (4) 

Where 𝐴𝐴(𝑀𝑀) is the matrix of covariates from the 
fitted VAR model and 𝑋𝑋�(𝑛𝑛) is the deviation from the 
data mean: 

𝑋𝑋�(𝑛𝑛) = 𝑋𝑋(𝑛𝑛) − 1
𝑁𝑁
∑ 𝑋𝑋(𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (5) 

with 𝑋𝑋(𝑛𝑛) being the observed data. Using Equation 
4, we can estimate our final prediction error as: 

𝐹𝐹𝐹𝐹𝐹𝐹 = �1 + 𝑀𝑀+1
𝑁𝑁
� 𝑆𝑆𝑀𝑀 (6)

where 𝑆𝑆𝑀𝑀 is: 

𝑆𝑆𝑀𝑀 = 𝑁𝑁
𝑁𝑁−𝑀𝑀−1

𝑅𝑅2����(𝐴𝐴(𝑀𝑀)) (7) 

Using our estimate of the final prediction error we 
can now formulate an information criterion to guide 
the selection of lags: 

𝐴𝐴𝐴𝐴𝐴𝐴 = ln|𝐹𝐹𝐹𝐹𝐹𝐹| + 2
𝑁𝑁
𝑀𝑀𝑀𝑀2 (8) 

𝐵𝐵𝐵𝐵𝐵𝐵 = ln|𝐹𝐹𝐹𝐹𝐹𝐹| + ln𝑁𝑁
𝑁𝑁
𝑀𝑀𝑀𝑀2 (9) 

where 𝑃𝑃 is the number of variables jointly modeled. 
Equations 8 and 9 use similar penalty terms, BIC 
penalizing complex models slightly more than AIC 
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due to the ln𝑁𝑁 term versus factor 2 as illustrated in 
Fig. 1. Ideally we would like to minimize how 
optimistic our model is, so we should select a 
number of lags that minimizes either the AIC or BIC, 
whichever we elect to use. Because of the slightly 
larger penalty term in BIC, models using this 
selection criteria will generally have fewer lags than 
those using AIC. 

Fig. 1 – Information criterion scores for solar forecasts (top) and 
temperature forecasts (bottom)

After we select the number of lags, we write the 
general form of the VAR framework for 𝑃𝑃 variables 
and 𝑀𝑀 lags as in Equation 10. 

𝑋𝑋𝑡𝑡 = 𝑐𝑐 + ∑ 𝐴𝐴𝑚𝑚
(𝑀𝑀)𝑋𝑋𝑡𝑡−𝑚𝑚𝑀𝑀

𝑚𝑚=1 + 𝑒𝑒 (10) 

or in long form for each variable 𝑥𝑥𝑝𝑝, 𝑝𝑝 ∈ [1, … ,𝑃𝑃] 
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where 𝑐𝑐 is some constant and 𝑒𝑒 is some error. 

4. Scenario Generation

Using the VAR framework, we can take advantage 
of either locally measured historical or typical 
weather data to forecast a range of scenarios to 
represent what the local weather of a given location 
may look like over the next 24-hours.  
The general process for producing weather 
scenarios is as follows: 

1. Fit a VAR model to the data by selecting a
number of lags via AIC and solving for the A
matrix like that shown in Equation 1

2. Find the standard deviation σ for each weather
variable over the number of lags preceding the
current time t

3. For each desired scenario, perturb the observed
weather data during the time window (based
on the selected number of lags) with a random
variable between ±σ and use the fitted VAR
model to predict a weather scenario using the
perturbed data.

The development of the stochastic weather 
generator gives us a tool for creating any number of 
plausible weather scenarios that largely relies on 
two parameters: 
1. The length of the historical window W (the

number of lags used in VAR process);
2. The number of scenarios to be generated.
These parameters can be thought of high-level 
tuning parameters specific to the application, 
building and data at hand but some general 
guidance on these questions is warranted. Fig. 2 
illustrates how the range of predictions changes 
depending on the number of scenarios, in particular 
it indicates a widening interquartile range as the 
number of scenarios increases. Indeed, as the 
number of scenarios approaches infinity, a scenario 
based stochastic MPC solution will begin to 
approximate the robust MPC solution (Zhang et al., 
2013). In addition to the temperature and humidity 
data we have seen thus far, we can also predict solar 
data like that shown in Fig. 3, which shows 
predictions for global horizontal and direct normal 
irradiance using data from Golden, Colorado. 

Fig. 2 – Example prediction ranges generated for an increasing 
number of scenarios for dry bulb temperature during 15:00 on July 
1st for Golden, CO
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Fig. 3 – Forecast of 10 direct normal and global horizontal 
irrradiance scenarios for 24 hours starting on July 1st in Golden, 
CO

5. Summary and Conclusions

The VAR framework provides an accessible and 
generally applicable method of representing 
uncertainty with scenarios. Indeed, the VAR 
solution is tractable (as evidenced by rapid scenario 
generation times) and easy to use, the only 
requirement being relatively stationary time-series 
test data, which the seasonal nature of weather 
phenomena is well suited for. While the proposed 
VAR framework provides a simple tool for 
generating forecasts of short-term weather trends 
for MPC applications, care must be exercised in 
choosing which variables are assumed to be related. 
Assuming two tangentially related variables are 
dependent on each other can produce poor fits and 
misleading results. Additionally, the selection of an 
appropriate time-horizon is important for capturing 
the daily swings in weather behavior; locations that 
see large diurnal temperature differences may 
require a longer historical window to produce 
acceptable fits. Fig. 4 illustrates this using 
predictions for a hot, humid climate (Atlanta, 
Georgia) during the summer season where the 
diurnal temperature swing is relatively large as 
compared to a temperate climate (Golden, 
Colorado) where the diurnal swing is 
approximately 5 °C on the presented day. 

Fig. 4 – Forecast of 50 dry-bulb temperature predictions for 
Golden, CO (temperate, dry) and Atlanta, GA (hot, humid)

The solution presented in this paper was developed 
as part of the stochastic MPC python package smpc 
(Currie, 2016), the goal of which is to provide a set 
of open-source tools for performing stochastic time-
series analysis and investigating stochastic MPC 
problems. 

Nomenclature 

AIC Akaike’s information criterion 
BIC Bayesian information criterion 
TMY Typical Meteorological Year 
VAR Vector autoregressive 

𝐴𝐴(𝑀𝑀) Covariate matrix of the fitted VAR model 
𝑐𝑐 Constant 
𝑒𝑒 Error 
𝐸𝐸 Total prediction error 
𝑓𝑓(𝑛𝑛) Fitted VAR model 
𝐹𝐹𝐹𝐹𝐹𝐹 Final prediction error 
𝐹𝐹 Future time horizon 
𝐻𝐻 Past time window 
𝑀𝑀 VAR model order, lag order 
𝑁𝑁 Number of observations 
𝑂𝑂 Model optimism 
𝑃𝑃 Number of features to model 
𝑅𝑅2����(𝐴𝐴(𝑀𝑀)) Residual mean squared error 
𝑇𝑇 Dry-bulb temperature 
𝑊𝑊 Absolute humidity 
𝑋𝑋(𝑛𝑛) Observed data 
𝑋𝑋�(𝑛𝑛) Deviation of the observed data from mean 
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