Identifikasi Pola Aliran Sungai Bawah Tanah Daerah Karst di Desa Gebangharjo Kecamatan Pracimantoro Menggunakan Metode Tomography Resistivity Konfigurasi Wenner-Schlumberger

Yudi Purwanto, Darsono Darsono, Sorja Koesuma

Abstract

This research is conducted using 4 lines data with 750 meters in length. Tomography resistivity with Wenner-Schlumberger configuration is used as this research methodology to take the data with a = 50 meters and n=1, 2, 3, 4, 5, 6. Resistivitymeter OYO 2119C McOHM-ELmodel is used as the instrument. Furthermore, the data is processed with two softwares; Res2Dinv ver. 3.56.22 to get 2D resistivity section and RockWork16to make 3D model of the site. The underground river’s chamber is made by hollow carbonate rocks with the resistivity of >412 Ωmand 117,6 Ωm – 412 Ωm for limestone’s resistivity as its capsrock. Researching to the depth of 173 meters, underground rivers are shown in the line 2 in the depth of 65 to 134 meters, 65 to 173 meters in the line 3, and in the cross section of line 3 and line 4. While in the first trajectory, another chamber is found within the depth of 12.5 to 40 meters. It is expected that the underground river is flowing to the south because of the chamber in third and fourth trajectory are lower than second trajectory.

Keywords

underground river, capsrock, chamber, resistivity

Full Text:

PDF

References

Bahri, A.S., Supriyanto, & Santosa, B.J. (2009). Penentuan Karakteristik Dinding Gua Seropan Gunung Kidul Dengan Metode Ground Penetrating Radar. Paper. Program Studi Geofisika, Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya.

Sunkar, Arzyana. (2008). Pentingnya Kategori Khusus Kawasan Lindung Bagi Konservasi Ekosistem. Indonesian Scientific Karst Forum. Yogyakarta : UGM.

Suryatmojo, H. (2006). Strategi Pengelolahan Ekosistem Karst di Kabupaten Gunung Kidul. Seminar Nasional Strategi Rehabilitasi Kawasan Konservasi Di Daerah Padat Penduduk. Fakultas Kehutanan UGM, 9 Februari.

Bhattacharya, P. K., & Patra. (1968). Methods in Geochemistry and Geophysics. London : Elsevier Publishing Company.

Robinson, E.S., & Coruh, C. (1988). Basic Exploration Geophysics. New York : Wiley.

Guatam, P., Pant, S. R., & Ando, H. (2000). Mapping Of Subsurface Karst Structure With Gamma Ray And Electrical Resistivity Profiles: A Case Study From Pokhara Valley, Central Nepal .Journal of Applied Geophysics, Volume 45, Issue 2, September 2000.

Zhu, J., Currens, J. C., & Dinger. (2011). Challenges of using electrical resistivity method to locate karst conduits—A field case in the Inner Bluegrass Region, Kentucky. Journal of Applied Geophysics 75, (2011) 523–530

Fadli, Z., Raad, R., Nordiana, M.M., Azwin, N., & Bery, A. A. (2015). Mapping Subsurface Karst Formation Using 2-D Electrical Resistivity Imaging (2-DERI). EJGE, Vol. 20 [2015], Bund. 1

Andriyani, S., Ramelan, A.H., & Sutarno. (2010). Metode Geolistrik Imaging Konfigurasi Dipole-Dipole Digunakan Untuk Penelusuran Sistem Sungai Bawah Tanah Pada Kawasan Karst Di Pacitan, Jawa Timur. Jurnal EKOSAINS, Vol. II , No. 1, Maret 2010.

Goldscheider, Nico, & Drew, David. (2007). Tutorial : Methods in Karst Hydrogeology. London : Taylor & Francis Group.

Moller, I., Sørensen, K.I., & Auken, E. 2006. Groundwater Resources inBuried Valleys. Hannover : Burval.

Loke, M.H. (2004). Application Of Surface Geophysics To Ground-Water Investigations. England : Birmingham University.

Surono, B.T., & Sudarno, I. (1992). Peta Geologi Lembar Surakarta-Giritontro, Jawa. Bandung : Pusat Penelitian dan Pengembangan Geologi.

Refbacks

  • There are currently no refbacks.