日本機械学会論文集A編
Online ISSN : 1884-8338
ISSN-L : 1884-8338
一般論文
0.7MPa水素ガス中における炭素鋼鋼板SM490Bの弾塑性破壊靭性に及ぼす変位速度の影響
松本 拓哉井藤賀 久岳平林 佐那久保田 祐信松岡 三郎
著者情報
ジャーナル フリー

2013 年 79 巻 804 号 p. 1210-1225

詳細
抄録

The elastic-plastic fracture toughness, JIc, of SM490B carbon steel plate was investigated in air and 0.7 MPa hydrogen gas. JIc tests were conducted in accordance with the JSME standard, JSME S001 (1981). JIc was much smaller in hydrogen at a displacement velocity of V = 2 × 10-3 mm/s (JIc = 10.0 kJ/m2) than in air at V = 2 × 10-3 mm/s (JIc = 248.6 kJ/m2). JIc in air does not satisfy the validity requirement. In hydrogen, surprisingly, a further decrease in V did not decrease JIc, but increased it. JIc in hydrogen at V = 2 × 10-5 mm/s was 60.9 kJ/m2. The large and small values of JIc in air and hydrogen corresponded to the fracture morphology. In air at V = 2 × 10-3 mm/s, a critical stretched zone, SZWc, was formed at the tip of the fatigue pre-crack, followed by dimples. In hydrogen at V = 2 × 10-3 mm/s, quasi-cleavage instead of SZWc and dimples were formed at the pre-crack tip. In hydrogen at V = 2 × 10-5 mm/s, SZWc was formed at the pre-crack tip, followed by dimples again. This elastic-plastic fracture toughness behavior was analyzed assuming HESFCG (hydrogen-enhanced successive fatigue crack growth), which is proposed by the authors to explain the acceleration of fatigue crack growth rate in the presence of hydrogen. The elastic plastic fracture toughness test shown in 0.7 MPa hydrogen gas at V = 2 × 10-3 mm/s is the same as that shown in a fatigue crack growth test in 0.7 MPa hydrogen gas at a number of cycles of n = 1 and stress ratio of R = 0; and thus JIc in 0.7 MPa hydrogen gas at V = 2 × 10-3 mm/s is not the real elastic-plastic fracture toughness. We conclude that the real elastic-plastic fracture toughness in 0.7 MPa hydrogen gas can be determined by fracture toughness testing in 0.7 MPa hydrogen gas at V = 2 × 10-5 mm/s.

著者関連情報
© 2013 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top