Skip to main content
Log in

Effects of media on differentiation of cultured human tracheal epithelium

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The purpose of the this study was to find media that supported high levels of differentiation in primary cultures of human tracheal epithelium. We tested six previously described, partially defined media and three nondefined media. Cells were grown with an air interface on porous-bottomed inserts, and differentiation was assessed from electrophysiological properties, levels of total protein and deoxyribonucleic acid, and histology, In all media, cells polarized and developed tight junctions as assessed from transepithelial electrical resistance and were better differentiated at 14 d after plating than at 7 d. The partially defined media described previously by Gray et al. (Am. J. Respir. Cell. Mol. Biol. 14:104–112; 1996) and Matsui et al. (J. Clin. Invest. 102:1125–1131; 1998) and an undefined medium containing Ultroser G serum substitute produced the most highly differentiated epithelial cells, as revealed by a high short-circuit current (Isc) and a ciliated, pseudostratified appearance. In other media, cells tended to be either squamous or stratified squamous, with Isc levels <25% of those obtained with the three optimal media. Though no key factor in the composition of the partially defined media could be identified, two of the four media with high concentrations of retinoic acid produced good differentiation. In contrast, that two media with the lowest [Ca] (0.11 mM produced poorly differentiated cells, as did the two partially defined media with low or no retinoic acid concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cesarone, C. F.; Bolognesi, C.; Santi, L. Improved microfluorometric DNA determination in biological material using Hoechst 33258. Anal. Biochem. 100:188–197; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, D. L.; Tuet, I. K.; Widdicombe, J. H. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am. J. Physiol. 246:C355-C359; 1984.

    PubMed  CAS  Google Scholar 

  • Gray, T. E.; Guzman, K.; Davis, C. W.; Abdullah, L. H.; Nettesheim, P. Mucociliary differentiation of serially passaged normal human tracheo-bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 14:104–112; 1996.

    PubMed  CAS  Google Scholar 

  • Gray, T.; Koo, J. S.; Nettesheim, P. Regulation of mucous differentiation and mucin gene expression in the tracheobronchial epithelium. Toxicology 160:35–46; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hull, J.; Harris, A. Limitations of cell culture of airway epithelium collected by a nasal brushing technique. In Vitro 30:488–489; 1994.

    Google Scholar 

  • Jiang, C.; Finkbeiner, W. E.; Widdicombe, J. H.; McCray, P. B.; Miller, S. S. Altered fluid transport across airway epithelium in cystic fibrosis. Science 262:424–427; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, I. G.; Dickman, K. G.; Moore, K. L.; Mandel, L. J.; Boucher, R. C. Enhanced Na+ transport in an air-liquid culture system. Am. J. Physiol. 264:L560-L565; 1993.

    PubMed  CAS  Google Scholar 

  • Lechner, J. F.; LaVeck, M. A. A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tissue Cult. Methods 9:43–48; 1985.

    Article  Google Scholar 

  • Le Dizet, M.; Beck, J. C.; Finkbeiner, W. E. Differential regulation of centrin genes during ciliogenesis in human tracheal epithelial cells. Am. J. Physiol. 275:L1145-L1156; 1998.

    Google Scholar 

  • Martin, W. R.; Brown, C.; Zhang, Y. J.; Wu, R. Growth and differentiation of primary tracheal epithelial cells in culture: regulation by extracellular calcium. J. Cell. Physiol. 147:138–148; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, H.; Randell, S. H.; Perretti, S. W.; Davis, C. W.; Boucher, R. C. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102:1125–1131; 1998

    Article  PubMed  CAS  Google Scholar 

  • Moghal, N.; Neel, B. G.. Integration of growth factor, extracellular matrix, and retinoid signals during bronchial epithelial cell differentiation. Mol. Cell. Biol. 18:6666–6678; 1998.

    PubMed  CAS  Google Scholar 

  • Niles, R. M.; Loewy, B. P.; Brown, K. The effect of retinoic acid on growth and proto-oncogene expression in hamster tracheal epithelial cells. Am. J. Respir. Cell. Mol. Biol. 2:365–371; 1990.

    PubMed  CAS  Google Scholar 

  • Smith, P. K.; Krohn, R. I.; Hermanson, G. T. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 71:1392–1401; 1985.

    Google Scholar 

  • Spangler, B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 56:622–647; 1992.

    PubMed  CAS  Google Scholar 

  • Takeyama, K.; Dabbagh, K.; Lee, H. M.; Agusti, C.; Lausier, J. A.; Ueki, I. F. Grattan, K. M.; Nadel, J. A. Epidemal growth factor system regulates mucin production in airways. Proc. Natl. Acad. Sci. USA 96;3081–3086; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Van Scott, M. R.; Lee N. P.; Yankaskas, J. R.; Boucher, R. C.. Effect of hormones on growth and function of cultured canine tracheal epithelial cells. Am. J. Physiol. 255:C237-C245; 1988.

    PubMed  Google Scholar 

  • Welsch, M. J. Electrolyte transport by airway epithelia. Physiol. Rev. 67:1143–1184; 1987.

    Google Scholar 

  • Widdicombe, J. H.; Chen, L. L.-K.; Sporer, H.; Choi, H. K.; Pecson, I. S.; Bastacky, S. J. Distribution of tracheal and laryngeal mucous glands in some rodents and the rabbit. J. Anat. 198:207–221: 2001.

    Article  PubMed  CAS  Google Scholar 

  • Willumsen, N. J.; Boucher, R. C., Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia. Am. J. Physiol. 256:C1054-C1063; 1989.

    PubMed  CAS  Google Scholar 

  • Wu R.; Martin, W. R.; Robinson, C. B. et al. Expression of mucin synthesis and secretion in human tracheobronchial epithelial cells growth in culture. Am. J. Respir. Cell. Mol. Biol. 3:467–478; 1990.

    PubMed  CAS  Google Scholar 

  • Wu, T.; Yankaska, J. R.; Cheng, E.; Knowles, M. R.; Boucher, R. C. Growth and differentiation of human nasal epithelial cells in culture: serum-free, hormone-supplemented medium and proteoglycan synthesis. Am. Rev. Respir. Dis. 132:311–320; 1985.

    PubMed  CAS  Google Scholar 

  • Yamaya, M.; Finkbeiner, W. E.; Chun, S. Y.; Widdicombe, J. H. Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 262:L713-L724; 1992.

    PubMed  CAS  Google Scholar 

  • Yamaya, M.; Finkbeiner, W. E.; Widdicombe, J. H. Ion transport by cultures of human tracheobronchial submucosal glands. Am. J. Physiol. 261:L485-L490; 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Widdicombe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, L.A., Finkbeiner, W.E. & Widdicombe, J.H. Effects of media on differentiation of cultured human tracheal epithelium. In Vitro Cell.Dev.Biol.-Animal 39, 56–62 (2003). https://doi.org/10.1290/1543-706X(2003)039<0056:EOMODO>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0056:EOMODO>2.0.CO;2

Key words

Navigation