Skip to main content
Log in

Reciprocal control of apoptosis and proliferation in cultured rat hepatoma arl-6 cells: Roles of nutrient supply, serum, and oxidative stress

  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In order to understand how cancer cells accumulate, rat hepatoma ARL-6 cells were cultured for 8 d to identify factors involved in spontaneous cell proliferation and apoptosis. With increasing time in culture, the proportion of cells in the proliferative phases of the cell cycle and the rate of deoxyribonucleic acid (DNA) synthesis decreased. The waning of proliferation was associated with a gradual reduction of cell viability, and this was temporally related to the appearance of typical apoptotic morphology and DNA laddering. Medium replacement or supplementation with fetal calf serum (FCS) suppressed apoptosis, while medium change, but not fetal calf serum alone, enhanced cell proliferation. Apoptosis was also suppressed by dimethyl sulfoxide (DMSO), but supplementary glutathione was without effect. Expression of poly(adenosine diphosphate[ADP]-ribose)polymerase peaked on days 3–4 of culture, and was followed by a progressive decrease thereafter, consistent with proteolytic cleavage. This decrease was prevented to varying extents by complete medium replacement, FCS and DMSO, indicating a close temporal relationship between poly(ADP-ribose)polymerase activation and apoptosis. Expression of Fas and Bcl-2 did not change appreciably over the 8-d culture, but there was a gradual increase in Bax expression; medium change, FCS and DMSO all partly inhibited Bax expression. These data indicate that spontaneous apoptosis in cultured ARL-6 cells is inversely related to cell proliferation, and that nutrient supply, and to a lesser extent, serum-derived factors and oxidative stress modulate apoptosis in this system. Proteolytic cleavage of poly(ADP-ribose)polymerase and expression of Bax are likely to be mechanistically involved with the control of spontaneous apoptosis in ARL-6 cells, whereas changes in the levels of Fas and Bcl-2 do not play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragane, Y.; Kulms, D.; Metze, D.; Wilkes, G.; Pöppelmann, B.; Luger, T. A.; Schwarz, T. Ultraviolet light induces apoptosis via direct activation of CD 95 (Fas/APO-1) independently of its ligand CD 95L. J. Cell Biol. 140:171–182; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Arends, M. J.; McGregor, A. H.; Wyllie, A. H. Apoptosis is inversely related to necrosis and determines net growth in tumors bearing constitutively expressed myc, ras, and HPV oncogenes. Am. J. Pathol. 144:1045–1057; 1994.

    PubMed  CAS  Google Scholar 

  • Barrett, J. C.; Preston, G. Apoptosis and cellular senescence: forms of irreversible growth arrest. In: Tomei, L. D.; Cope, F. O., ed. Apoptosis II: the molecular basis of apoptosis disease. New York: Cold Spring Harbor Laboratory Press; 1994:253–281.

    Google Scholar 

  • Bursch, W.; Oberhammer, F.; Schulte-Hermann, R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol. Sci. 13:245–251; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Celli, A.; Que, F. G.; Gores, G. J.; LaRusso, N. F. Glutathione depletion is associated with decreased Bcl-2 expression and increased apoptosis in cholangiocytes. Am. J. Physiol. 275:G749-G757; 1998.

    PubMed  CAS  Google Scholar 

  • Chateau, M. T.; Ginestier-Verne, C.; Chiesa, J.; Caravano, R.; Bureau, J. P. Dimethyl sulfoxide-induced apoptosis in human leukemic U937 cells. Anal. Cell Pathol. 10:75–84; 1996.

    PubMed  CAS  Google Scholar 

  • Collins, M. K.; Perkins, G. R.; Rodriguez-Tarduchy, G.; Nieto, M. A.; Lopez-Rivas, A. Growth factors as survival factors: regulation of apoptosis. Bioessays 16:133–138; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R. E.; Juan, J.; Horvitz, H. R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7:663–698; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Estoppey, S.; Rodriguez, I.; Sadoul, R.; Martinou, J. C. Bcl-2 prevents activation of CPP32 cysteine protease and cleavage of poly(ADP-ribose) polymerase and UI-70 kD proteins in staurosporine-mediated apoptosis. Cell Death Differ. 4:34–38; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Evan, G. I.; Wyllie, A. H.; Gilbert, C. S., et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Fau, D.; Lekehal, M.; Farrell, G.; Moreau, A.; Moulis, C.; Feldmann, G.; Haouzi, D.; Pessayre, D. Diterpenoids from germander, an herbal medicine, induce apoptosis in isolated rat hepatocytes. Gastroenterology 113:1334–1346; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Forrest, V. J.; Kang, Y. H.; McClain, D. E.; Robinson, D. H.; Ramakrishnan, N. Oxidative stress-induced apoptosis prevented by Trolox. Free Radic. Biol. Med. 16:675–684; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Galle, P. R.; Hofmann, W. J.; Walczak, H.; Schaller, H.; Otto, G.; Stremmel, W.; Krammer, P. H.; Runkel, L. Involvement of the CD 95 (APO-1/Fas) receptor and ligand in liver damage. J. Exp. Med. 182:1223–1230; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gerschenson, L. E.; Rotello, R. J. Apoptosis and cell proliferation are terms of the growth equation. In: Tomei, L. D.; Cope, F. O., ed. Apoptosis I: the molecular basis of cell death. New York: Cold Spring Harbor Laboratory Press; 1991:175–192.

    Google Scholar 

  • Grassilli, E.; Carcereri de Prati, A.; Monti, D.; Troiano, L.; Menegazzi, M.; Barbieri, D.; Franceschi, C.; Suzuki, H. Studies of the relationship between cell proliferation and cell death. II. Early gene expression during concanavalin A-induced proliferation or dexamethasone-induced apoptosis of rat thymocytes. Biochem. Biophys. Res. Commun. 188:1261–1266; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. R.; Martin, S. J. The killer and the executioner: how apoptosis controls malignancy. Curr. Opin. Immunol. 7:694–703; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Hug, H. Fas-mediated apoptosis in tumor formation and defense. Biol. Chem. 378:1405–1412; 1997.

    PubMed  CAS  Google Scholar 

  • Isacson, C.; Kessis, T. D.; Hedrick, L.; Cho, K. R. Both cell proliferation and apoptosis increase with lesion grade in cervical neoplasia but do not correlate with human papillomavirus type. Cancer Res. 56:669–674; 1996.

    PubMed  CAS  Google Scholar 

  • Kaufmann, S. H.; Desnoyers, S.; Ottaviano, Y.; Davidson, N. E.; Poirier, G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53:3976–3985; 1993.

    PubMed  CAS  Google Scholar 

  • Kerr, J. F.; Winterford, C. M.; Harmon, B. V. Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J. F.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–257; 1972.

    PubMed  CAS  Google Scholar 

  • Korsmeyer, S. J. Regulators of cell death. Trends Genetics 11:101–105; 1995.

    Article  CAS  Google Scholar 

  • Kroemer, G.; Petit, P.; Zamzami, N.; Vayssiere, J. L.; Mignotte, B. The biochemistry of programmed cell death. FASEB J. 9:1277–1287; 1995.

    PubMed  CAS  Google Scholar 

  • Lazebnik, Y. A.; Kaufmann, S. H.; Desnoyers, S.; Poirier, G. G.; Earnshaw, W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Leverkus, M.; Yaar, M.; Gilchrest, B. A.: Fas/Fas ligand interaction contributes to UV-induced apoptosis in human keratinocytes. Exp. Cell Res. 232:255–262; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Marvel, J.; Perkins, G. R.; Lopez, R. A.; Collins, M. K. Growth factor starvation of Bel-2 overexpressing murine bone marrow cells induced refractoriness to IL-3 stimulation of proliferation. Oncogene 9:1117–1122; 1994.

    PubMed  CAS  Google Scholar 

  • McClain, D. E.; Kalinich, J. F.; Ramakrishnan, N. Trolox inhibits apoptosis in irradiated MOLT-4 lymphocytes. FASEB J. 9:1345–1354; 1995.

    PubMed  CAS  Google Scholar 

  • Mignotte, B.; Vayssiere, J. L. Mitochondria and apoptosis. Eur. J. Biochem. 252:1–15; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki, K.; Hayashi, N.; Hiramatsu, N.; Ktayama, K.; Kawanishi, Y.; Kasahara, A.; Fusamoto, H.; Kamada, T. Fas antigen expression in liver tissues of patients with chronic hepatitis B., J. Hepatol. 24:1–7; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S. Fas-mediated apoptosis. Adv. Exp. Med. Biol. 406:119–124; 1996.

    PubMed  CAS  Google Scholar 

  • Negri, C.; Bernardi, R.; Donzelli, M.; Prosperi, E.; Scovassi, A. I. Sequence of events leading to apoptosis in long term cultured HeLa cells. Cell Death Differ. 3:425–430; 1996.

    PubMed  CAS  Google Scholar 

  • Nicoletti, I.; Migliorati, G.; Pagliacci, M. C.; Grignani, F.; Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139:271–279; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer, F.; Wilson, J. W.; Dive, C.; Morris, I. D.; Hickman, J. A.; Wakeling, A. E.; Walker, P. R.; Sikorska, M. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12:3679–3684; 1993.

    PubMed  CAS  Google Scholar 

  • Patel, T.; Gores, G. J. Inhibition of bile-salt-induced hepatocyte apoptosis by the antioxidant lazaroid U83836E. Toxicol. Appl. Pharmacol. 142:116–122; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Peitsch, M. C.; Mannherz, H. G.; Tschopp, J. The apoptosis endonucleases: cleaning up after cell death?. Trends Cell Biol. 4:37–41; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Perry, D. K.; Smyth, M. J.; Wang, H. G.; Reed, J. C.; Duriez, P.; Poirier, G. G.; Obeid, L. M.; Hannun, Y. A. Bcl-2 acts upstream of the PARP protease and prevents its action. Cell Death Differ. 4:29–33; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Qiao, L.; Farrell, G. C. The effects of cell density, attachment substratum and dexamethasone on spontaneous apoptosis of rat hepatocytes in primary, culture. In Vitro Cell. Dev. Biol. 35:417–424; 1999.

    CAS  Google Scholar 

  • Reed, J. C. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1–6; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Shaposhnikov, Y.; Maheshwari, Y.; Sykes, D. E.; Weiser, M. M. Intestinal cell apoptosis and bcl-2 expression. Cell Death Differ. 3:125–130; 1996.

    PubMed  CAS  Google Scholar 

  • Sherwood, S. W.; Schimke, R. T. Cell cycle analysis of apoptosis using flow cytometry. Methods Cell Biol. 46:77–97; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Terada, T.; Nakanuma, Y. Expression of apoptosis, proliferating cell nuclear antigen, and apoptosis-related antigens (bcl-2, c-myc, Fas, Lewisy and p53) in human cholagiocarcinoma and hepatocellular carcinomas. Pathol. Int. 46:764–770; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Teramoto, S.; Tomita, T.; Matsui, H.; Ohga, E.; Matsuse, T.; Ouchi, Y. Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: protective roles of glutathione. Jpn. J. Pharmacol. 79:33–40; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Vlachaki, M. T.; Meyn, R. E. ASTRO research fellowship: the role of BCL-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis. Int. J. Radiat. Oncol. Biol. Phys. 42:185–190; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A. H. Cell death in tissue regulation. J. Pathol. 153:313–316; 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey C. Farrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, L., Farrell, G.C. Reciprocal control of apoptosis and proliferation in cultured rat hepatoma arl-6 cells: Roles of nutrient supply, serum, and oxidative stress. In Vitro Cell.Dev.Biol.-Animal 36, 465–475 (2000). https://doi.org/10.1290/1071-2690(2000)036<0465:RCOAAP>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0465:RCOAAP>2.0.CO;2

Key words

Navigation