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Abstract: Solving mixed integer linear programming (MILP) problems is a difficult task 

due to the parallel use of both integer and non-integer values. One of the most widely used 

solution is to solve the problem in the real space and they apply additional iteration steps 

(so-called cutting-plane algorithms or Gomory’s cuts) to narrow down the solution to the 

optimal integer solution. The ABS class of algorithms is a generalized class of algorithms 

which, with appropriate selection of parameters, is suitable for the solution of both integer 

and non-integer linear problems. Here we provide for the first time a complete ABS-based 

algorithm for MILP problems by adaptation of the ABS approach to Gomory’s cutting-

plane algorithm. We also provide a numerical example demonstrating the working 

principle of our algorithm. 

Keywords: linear programming; ABS methods; mixed integer problem; cutting-plane 

methods; Gomory’s cuts 

1 Introduction 

Mixed Integer Linear Programming (MILP) problems are linear programming 

problems in which some but not all elements of the solution vector are integer. 

They can be formulated in the following general form: 

},  ,0,:min{ IjZxxbAxxc j

T   (1) 
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where no assumption related to the structure of the matrix A  is made but the set I 

of the x variables need to be integer. MILP problems arise during everyday life 

whenever continuous and discrete parameters need to be optimized, ranging from 

basic business decisions through traffic control to guiding unmanned aerial 

vehicles. Despite their major importance, there is no perfect solution for MILP 

problems. In particular, because of the integer nature of some elements of the 

solution vector, general MILP algorithms are nondeterministic polynomial time 

(NP) hard algorithms which are not very effective in practice. Therefore, various 

approaches have been developed to solve MILP problems in polynomial or quasi-

polynomial time. 

One of the possible approaches to overcome the NP-hard nature of MILP 

problems is to first solve the same problem in the real space, i. e. without any 

constraints on whether elements of the solution vector need to be integer or not. 

Such modified problems are called the LP relaxation of the original problem and 

can be described in the following general form: 

},0 ,:min{  xbAxxcT
 (2) 

The advantage of this approach is that (2) can be solved by general linear 

programming (LP) applications in polynomial time which are much more effective 

in practice. However, those solutions contain both integer and non-integer solution 

values which need to be separated (so-called separation problem). Since the 

condition of integer nature has to be met, the optimum solution has to be identified 

in a second step where the optimum solution vector is narrowed down to values 

that meet the integer requirement. This is performed by establishing a new 

condition that is only satisfied if the solution matrix meets the relevant integer 

requirement. With other words, solutions that do not satisfy the integer 

requirements are “cut out” of the resulting solution matrix. Therefore, such 

algorithms called “cutting-plane algorithms”, “cuts” or, according to its first 

description, “Gomory’s cuts”. During a cutting-plane algorithm, several iteration 

steps are used to refine the solution matrix in order to find the optimum integer 

solution (a solution to the separation problem). Cutting planes are inequalities that 

solve the separation problem and. Such cutting planes serve to tighten the so-

called LP relaxation resulting in better approximation of the convex hull of the 

original MILP problem. All current commercial MILP problem solving algorithms 

apply Gomory’s cutting-plane algorithm to find the optimal integer solution. 

Historically, Gomory first described an algorithm that finds the optimal solution in 

finite iteration steps for Integer Linear Programming (IP) in 1958 [1]. Such an 

algorithm solves the separation problem when x
*
 is an optimal basis of the LP 

relaxation. In 1960, Gomory introduced the Gomory Mixed Integer (GMI) cuts to 

deal with the mixed-integer case [2]. However, he never emphasized the practical 

use of this method, since the cutting plane algorithms converge very slowly to the 

optimum solution and the resulting large number of cuts results in very large LPs 
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with corresponding numerical difficulties. However, a major improvement came 

from Balas et al. [3] who re-analyzed the original Gomory mixed-integer cuts [2] 

and overruled the common belief that these cuts had no practical importance. In 

fact, a series of improvements eventually led the same group to show that Gomory 

‘s cuts are fundamental tools for the solution of 0-1 MILP problems [4]. However, 

given the major importance of MILP problems, additional approaches to solving 

such problems or performing Gomory’s cuts are still actively needed. 

The ABS class of algorithms are generalized algorithms which, with appropriate 

selection of parameters, can be used to solve diverse mathematical problems. They 

were initially developed by Abaffy, Broyden and Spedicato [5-7] to solve linear 

systems of equations over the real space. The class was later generalized (so-

called scaled ABS class) and applied also to the solution of various additional 

linear and nonlinear problems [8]. The ABS algorithm was applied to 

mathematical optimization problems such as LP problems via a certain subclass of 

ABS (called implicit LX) by reformulating the simplex method [9, 10]. However, 

those studies did not address the problem of finding an initial basis and an initial 

feasible solution. 

It is theoretically possible that ABS-based algorithms may also be able to provide 

suitable solutions for MILP problems. If so, then the algorithm could take 

advantage of various unique features of the ABS class. For example, ABS 

algorithms have n inherent capability of finding cutting planes that are linearly 

dependent, which is a major obstacle in the algorithm presented by [4]. However, 

no ABS-based algorithms have yet been reported that are capable of solving an 

entire MILP problem. 

In this paper we present a new method for solving mixed-integer problems by 

applying the ABS approach to Gomory’s cutting plane algorithm. Since no ABS-

based methods to finding the initial basis and initial feasible solution for the 

simplex method have yet been described, we first present an ABS-based solution 

for finding those parameters. In parallel, we construct the projection matrix H of 

the ABS class. Together with the above mentioned LX method for the ABS-based 

reformulation of the simplex method, these results now allow the ABS-based 

solution of LP problems. Next we describe a new method by applying the ABS 

class to Gomory’s cutting plane methods. Those components are placed into a 

frame allowing the solution of MILP problems. Finally, we provide a numerical 

example to illustrate the working principles of our algorithm. 
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2 ABS Algorithm for Solving LP Problems 

Let us consider the following modified system 

0,

}{min





ux

bIuAx

ueT

 (3) 

where e is the vector of all ones, and b≥0¸ (if not, then we can multiply the 

constraints by -1 to achieve this) and the u are artificial (slack) variables. Define 

 TTT uxx ~
and  IAA 

~
 so that the constraints of the modified can be 

written as 0~,~~
 xbxA .  

Let B be the indices corresponding to the artificial variables. Then B is a basis, 

since the corresponding columns of A
~

 are I , the identity, and thus linearly 

independent. The corresponding basic feasible solution is 0x , bu  . We use 

this to initialize the necessary parameters (i.e. the projection matrix) for the ABS-

based simplex algorithm. 

Algorithm 1: Finding an initial feasible solution 

(A1) Let 
nRx 

1

~
 be arbitrary, 0~

1
x , i=1, and IH 1  , where 

nnRI ,  

unit matrix. 

(B1) Calculate the following vectors 

,~
iii aHs   (4) 

ii

T

ii bxap  ~~
. (5) 

If 0is  , then go to C1. 

If 0is  and 0ip  then ixx
i

~~
1



 , ii HH 1  go to F1. (The ith equation 

linearly depends on the previous ones.) 

(C1) Compute the search vector 

im

T

ii eHp   , where ime   is the m+ith unit vector. 

(D1) Update the approximation of the solution by 

iiii pxx 
~~

1 , where 

i

T

i

i
i

pa

r
~ . 
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(E1) Update the Hi  matrix by 

i

T

i

T

ii
ii

ap

ps
HH ~1   

(F1) If i=m, then STOP. 1
~

mx   is a solution of the system. 

If i≠m, then increment the index i by one and go to B1. 

Remark 2.1 The algorithm is well-defined as the conditions 0 i

T

im se and the 

0~ i

T

i pa are trivially true. 

Remark 2.2 The original ABS algorithm contains a case 0is  and 0ir in 

step B1, which means the incompatibility of the system of equations. This never 

happens in our case as our system has the obvious solution  T
b0,0,...,Tx . 

Remark 2.3 The iH  projection matrices, generated by Algorithm 1, are 

Hermitian and they have the following special structure 

,































1..0...

....

1...1...

0...0

..

0...0

 

where * indicates possible non-zero elements. Furthermore, the indexes of the 

zero rows are the basis elements, and the indexes of the non-zero rows are the 

non-basis ones. [10] 

Remark 2.4 In general, finding an initial basis for the standard problem is as 

difficult as finding an optimal solution for the original problem. Please refer to 

Abaffy et al. [11] for finding an initial feasible solution, where the initial bases 

and the H projection matrix are parallely calculated saving a number of 

operations. 

Let’s use the following notation. The indexes of the non-identically zero rows of 

the Hi matrix is Bi and the indexes of the zero rows of Hi is Ni. 

The simplex algorithm performs successive iteration steps (pivot operations) to 

gradually improve the feasible intermediate solution. 
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Once the pivot column has been selected, the choice of pivot row is largely 

determined by the requirement that the resulting solution is feasible. This means 

using the ABS terminology that we need to minimize the expression 

ieHe

ex
Bk

N

T
i

T
k

k
T




|  such that 0>N

T

i

T

k eHe  [10]. 

The ABS formulation of the simplex method is defined by the following 

procedure. 

Algorithm 2: ABS based simplex method (Finding the optimal solution in real 

space) 

(A2) Let 
nRx 1  be a feasible solution of problem (2). 1H  is the projection 

matrix for this feasible solution, and i=1. 

(B2) Compute the search vector pi by 


N

T

ii eHp , where N
e  is unit vector, where 

}|min{ ij

T

i

T

N

T

i

T NjeHceHc  . 

(C2) Update the solution 

iiii pxx 1  , where 

}0>|min{ 







N

T

i

T

kieHe

x

eHe

x

i eHeandBk
N

T
i

T
k

k

N

T
i

T

B

B . 

(D2) Update the projection matrix 



 

 
B

T

N

i
T

NBBi

Hee

HeeeH

ii HH
)(

1   

(E2) If 01 

T

i

T Hc  then STOP. xi+1 is the optimal solution. 

If 
T

i

T Hc 1  vector has negative element, then the xi+1 solution is not optimal, 

Hi=Hi+1, xi=xi+1and go to step B2. 

Remark 2.5 Computing the pi vector means that we determine the entering 

variable into the basis in step B5 and updating the solution with the selected eB
* 

means that we select the leaving variable from the basis. 

Remark 2.6 The selection of the entering variable in step B2 is taken as the 

column with least relative cost. In the ABS approach it corresponds to the 

minimization of the expression j

T

i

T eHc . However, the minimization can be 

changed to maximization or other selection strategy. 

Remark 2.7 Residual cost vector is cHr i in every iteration step [10]. 
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There are two conceptually different approaches to solving LP problems in real 

space. The simplex algorithm first finds a basic solution that is feasible (i. e. the 

solution is nonnegative) and the following iteration steps refine this solution 

towards the optimum solution while maintaining feasibility of the intermediate 

solutions throughout the entire procedure. In contrast, the dual simplex algorithm 

first finds a basic solution that is primal infeasible (there are certain negative 

values) but dual feasible and the following iteration steps are similarly feasible in 

the dual but not in the primal case except for the last iteration step in which the 

final solution will be both primal and dual feasible. With other words, the simplex 

algorithm performs the entire iteration procedure in the primal feasible space 

whereas the dual simplex algorithm does so in the dual feasible (but primal 

infeasible) space and only the final step will ensure primal feasibility. 

Nevertheless, both algorithms are able to find the same final (optimal) solution. 

An important feature of the dual simplex algorithm is that it is most suitable to 

solve problems where a dual feasible solution can easily be found, or when 

additional conditions (change of parameters, additional constraints) are set after 

having obtained an initial fasible solution for the original problem. 

As mentioned above, Algorithm 2 finds a feasible optimum solution for problem 

(3) in the real space using the principles of the simplex algorithm. In the following 

section we re-formulate the ABS algorithm to also perform the dual simplex 

method in the real space (Algorithm 3). This algorithm will then be used to re-

optimize the intermediate solution following the introduction of a new integer 

condition in Algorithm 4. 

Algorithm 3: ABS based dual simplex method (Re-optimizing with dual simplex 

method) 

(A3) Let 
nRx 1  a dual feasible solution of the problem (2), 1H  is the 

projection matrix for this dual feasible solution, and i=1. 

(B3) (Selection of the leaving variable.) Find an index (N
*)

 with a negative right-

hand-side constant. If more than one value  is negative then select 

} 0<|min{ ijj BjxxN 
. 

(C3) (Determining the entering variable.) Let Ki = (I-Hi), where 
nnRI ,  unit 

matrix. Find the index B
*
 where 

}0|min{  




N

T

i

T

kieKe

eHc
eKeandNkB

N

T
i

T
k

k
T
i

T

, where N
e  and ke  are 

unit vector. 

(D3) (Change the basis.) 

Update the solution 
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iiii pxx 1  , where 





N

T
i

T

B

B

eHe

x

i and 
N

T

ii eHp  

Update the projection matrix 



 

 
B

T

N

i
T

NBBi

Hee

HeeeH

ii HH
)(

1  

(E3) (Feasibility test) 

If all entries, xi+1>0 are nonnegative the solution is primal feasible, so STOP xi+1¸is 

the optimal solution. 

If xi+1 vector has negative element, then the xi+1 solution is not optimal, Hi=Hi+1, 

xi=xi+1and go to step B3. 

Remark 2.7 In step B3, there are several strategies for choosing the index of the 

leaving variable (N
*
). We select the most negative one, but selecting the first 

negative element has also been proposed. 

3 ABS Algorithm for Solving Integer and Mixed 

Integer Problems 

Here we will present our ABS-based algorithm to solve integer and mixed integer 

LP problems. Our basic idea is to apply Gomory cutting plane methods to add a 

linear constraint to exclude any non-integer optimal solutions. Let an MILP 

problem be formulated as in (2). The method proceeds by first dropping the 

requirement that certain xi be integer and solving the associated linear 

programming problem. If the solution found does not satisfy to the integer 

condition, then we add constraints (cuts) to the already solved LP. While such 

constraints can make the primal solution infeasible, they do not affect feasibility of 

the dual solution. We can therefore simply add the constraint and continue running 

the dual LP algorithm from the current solution until the primal solution again 

becomes feasible. The process is repeated until an integer solution is found. Cut or 

condition generation is a crucial step in the method. Many different strategies are 

known to construct the condition [3]. We implemented the pure Gomory cut to 

illustrate the running principle of our algorithm. 

    i

Bj

ijjiji bbxaas 


)( ,,1 , 

where s1≥0 is a new slack variable, and jia , denotes entry of the optimal tableau in 

the ith row and the jth column. 
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Algorithm 4 Solving Integer and Mixed Integer LP. 

(A4) Initialization: 

Rephrase the mixed or integer LP that we drop the integrity restriction for the 

variable. 

(B4) Find an initial feasible solution for the new problem. (use Algorithm-1) 

(C4) Solve the LP relaxation LP0 problem (use Algorithm-2) 

If the relaxation does not have optimal solution, then STOP. Denote x
*
 is an 

optimal vertex. 

(D4) If x
*
 is integer then STOP, otherwise 

Choose the first (i.e., highest) row ith where the optimal solution (x
*
) is not 

integral. (Note that this includes the zeroth row.) 

Add the cut to the bottom of the optimal tableau, and add n+1 to the basis B. 

(E4) Use the dual simplex algorithm starting with the previous optimal tableau 

extended by the Gomory cut to find the lexicographically largest feasible 

solution of the relaxation (use Algorithm-3) 

(F4) Set i:= i+ 1. Go to D4 

Remark 3.1 A cut is never based on a previous cut, so i≠n+1 in step D4. 

Remark 3.2 The current algorithm adds just one new line to the system in every 

step, and the new cut uses previous ones. Cuts can also be rewritten. 

Remark 3.3 The Gomory Cutting Plane Algorithm terminates in a finite number 

of steps. The proof strongly utilizes the fact that we choose the first row for the 

new cut in step D4 [1, 2]. 

Remark 3.4 Note that the form the implicit LX algorithm follows he special 

structure of the projection matrix. Therefore the number of the non-zero rows 

remains fix that is it does not increase with the new cuttings. 

4 Numerical Results 

To illustrate the numerical feature of our algorithm, we implemented it in 

MATLAB R2010a on a personal computer running Microsoft Windows 7. In all 

cases our algorithm found the optimal solution. 

Below we show an example to illustrate how our algorithm finds the solution. 

Consider the following integer problem [12] to 

max)2347( 4321  xxxxz  
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subject to  102 321  xxx  (6) 

122 4321  xxxx  

1423 431  xxx , 
Zxxxx 4,321 ,,  

Define the following LP problem 

xcT

x
min  

subject to bAx  , 0x , where 















 



2301

1211

0112

A , 



















14

12

10

b ,  2347cT   

Introduce the u1, u2, u3 non-negative slack variable to obtain the following 

standard LP problem 















 



1002301

0101211

0010112

A
~

,  































3

2

1

4

3

2

1

u

u

u

x

x

x

x

x~ ,  

 

 0002347 Td  

 

We apply our Algorithm-1(Finding an initial feasible solution - Phase 1) in three 

steps using e5, e6, e7 unit vectors respectively. We obtain the following projection 

matrix 
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





































0000000

0000000

0000000

2101000

3210100

0110010

1120001

TH 3 , 

and an initial feasible solution 































14

12

10

0

0

0

0

3x . 

We can notice that the H3 matrix is Hermitian and the indexes of basis B3={5, 6, 

7}. Note that the number of the non-zero rows is the number of the elements of the 

bases. As the cost vector  0002347 3HcT
 has 

negative elements, our feasible solution is not optimal. 

We apply the ABS based simplex algorithm (Finding the optimal solution). After 

four steps we obtain the optimal solution 































0

0

0

0

6

3

8

3
2

7x , 

and our projection matrix is 
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



































1000

0100

0010

0001

0000000

0000000

0000000

18

3

6

5

2

1

18

3

18

21

2

1

18

3

18

3

2

1

2

1

2

1

2

1
7H  

The structure of the H7 matrix clearly shows that the indexes of the basis are 

B7={1, 2, 3}. As the obtained solution is not integer we need to introduce a new 

slack variable s1 and add a new equation (constraint) 

3

2

6

1

6

1

18

15

2

1
17654  sxxxx  (c1) 

The basic feature of the ABS methods is that by adding a new equation to our 

system the algorithm finds a solution lying at the intersection of the linear 

varieties of the solutions of the original and the new equation within one step. We 

add a new line for our projection matrix 

















































10000000

01000
18

3

6

5

2

1

00100
18

3

18

21

2

1

00010
18

3

18

3

2

1

00001
2

1

2

1

2

1
00000000

00000000

00000000

7
~H , 

and we solve the new equations. 

We obtain that our solution (x8 ) is infeasible. 
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



































3

2

0

0
0

0

6

3

8

3

2

8x . 

We need to use our Algorithm-3 to move to a feasible solution. The projection 

matrix for our dual simplex method is 

















































10000000

01000
18

3

6

5

2

1

00100
18

3

18

21

2

1

00010
18

3

18

3

2
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After two steps we obtain the optimal solution for the modified system. 
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and our projection matrix is 
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A new fractional solution has been found, we need to generate a new constraint, 

which is valid for the integer solution, but not for our current solution. The new 

cutting plane is 

3

1

3

1

3

1

3

2
2765  sxxx  (c2) 

After solving the new equations, and using Algorithm-3 for re-optimizing the 

solution, we obtain a new solution. 
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and projection matrix is 
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The found solution is not integer, therefore we add the constraint 
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2

1

2

1
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1
3976  sxxx  (c3) 

After solving the new equations, and using Algorithm-3, we obtain the solution 
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and projection matrix is 
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
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3cH . 

Our optimal solution is integer, therefore we found the solution for our problem 

(6) because the 
3Cx is primal feasible and every components is integer. 

Discussion and Conclusions 

In this paper we showed that the Gomory’s original cutting-plane approach can be 

embedded in the ABS class of algorithms. Furthermore, we implemented our new 

algorithm in MATLAB and an example was given to demonstrate the correctness 

of our method. 

Though Zou and Xia described an ABS-based algorithm for solving integer LP 

problems [13], the published method worked only on a special case when the A 

matrix is unimodular, i.e. the determinant of A is 1. The constraints on the A 

matrix and the inability of that algorithm to deal with mixed integer problems 

strongly limited the spectrum of problems that the algorithm was able to solve. 

A cucial step of our algorithm is the generation of Gomory’s cuts. In the current 

version of our algorithm, we used Gomory's original cuts defined in the LP 

optimal tableau. Since a number of additional cutting strategies have also been 

published, we also intend to extend our algorithm t those other types of cuts. We 

are planning to compare them and analyze the numerical feature of them, 

emphasizing the possibilities of the parallelization as the ABS algorithms are 

suitable for parallelization. 

We should mention that every cut adds a new slack variable to the system, which 

means that the number of columns of the projection matrix increases by one in 

every steps (the number of rows remains). Some results were published to avoid 

this problem [14] and we are planning to implement them, too. 

A number of papers were published showing that ABS-based algorithms are 

suitable for solving integer LP and Diophantine linear systems of equations too 
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[15-19]. Therefore some further work should be considered including 

investigations of the implementation of the pure integer algorithm using Gomory’s 

cuts [14, 20]. 
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