
Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 165 ‒

A Hybrid Machine Learning-based Control
Strategy for Autonomous Driving Optimization

Ahmad Reda, Rabab Benotsmane, Ahmed Bouzid,
József Vásárhelyi
Institute of Automation and Info-communication, University of Miskolc,
Egyetemváros, 3515 Miskolc, Hungary, {autareda, iitrabab, ahmed.bouzid,
vajo}@uni-miskolc.hu

Abstract: Developing autonomous vehicles is a highly important topic in the field of
intelligent transportation systems. Automated steering is a crucial function in the
autonomous vehicle. Therefore, it is urgent to either develop a new effective control strategy
or improve existing ones. A variety of control strategies are used for this purpose, most with
limitations related to their computing capabilities with the highly complex systems or to lack
of efficacy related to maintaining the balance between driving performance and driving
smoothness. In this paper, three different machine learning-based models were developed to
perform an autonomous driving task: a supervised learning model (Deep Neural Network,
DNN), a reinforcement Deep Q-learning model (DQN), and a hybrid model. The DNN model
was trained based on the behavior of the classical MPC controller. The DQN was designed
with the same structure as the DNN and trained by directly interacting with the driving
environment. The hybrid model is a combination of supervised and reinforcement learning
algorithms, where the trained DNN model is used as a decision-maker (Actor) in a deep
deterministic policy gradient reinforcement learning model. The behavior of the designed
models was compared based on several performance indicators, including the ability to drive
the vehicle along the desired trajectory, the response time, and the smoothness of the driving
system. The results show that the DNN model was able to imitate the behavior of the
traditional MP Controller efficiently and all three machine learning models successfully
drive the vehicle along the desired path. The hybrid model achieves the best results and
improved the smoothness of the driving system with a reasonable response time.

Keywords: Autonomous Driving; Model Predictive Control (MPC); Supervised Learning;
Deep Neural Networks; Reinforcement Learning; Deep Q-Network (DQN); Deep
Deterministic Policy Gradients (DDPG)

1 Introduction
The evolution of autonomous driving systems has seen the use of different
technologies aiming to improve efficiency, enhance driving safety and reduce the
risks related to traffic congestion. Driving in a structured environment and highway

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 166 ‒

driving projects were some of the earliest autonomous vehicle projects, carried out
at Carnegie Mellon University and Bundeswehr University Munich [2], [3]. Since
then, projects and research related to autonomous vehicles have been carried out by
academic institutes and companies alike. According to the Taxonomy and
Definitions for Terms Related to On-Road Motor Vehicle Automated Driving
Systems "SAE-J3016", vehicle autonomy is divided into six different levels. Level
0 (No Automation) depends on the human driver to perform all the driving tasks, it
is manually controlled. Level 1 (Driver Assistance) is considered the lowest
automation level, where the driver has full responsibility, but some assistant driving
systems are included for certain circumstances. Level 2 (Partial Automation)
combines different automated functions which can be working simultaneously, such
as steering and acceleration tasks, but the driver is still involved in the driving tasks
such as performing the maneuvers and has to monitor the environment all the time.
At Level 3 (Conditional Automation) the vehicle has the capability of detecting the
surrounding environment and making decisions in normal conditions, but the
necessity of the driver still exists, meaning that the driver has to be ready to take
control over the vehicle at any time. At Level 4 (High Automation) the vehicle
performs all the driving tasks in most circumstances, and the driver still has the
option to take control. At Level 5 (Full Automation) the vehicle is capable of
performing all driving tasks in all circumstances, and the driver has the option to
manually override [4], [5]. The vehicle interacts with the surrounding environment
in order to perform several related tasks: perception, where the required information
about the driving environment is provided to the system; planning, where the
optimal scenarios and the control actions are obtained based on the provided
information; and the control function, where the control strategy is put into action
[6]. The automated steering task is a part of the control function, where the tracking
errors are minimized in order to follow the desired trajectory. Driving the vehicle
along the desired trajectory is considered one of the most critical tasks due to the
fact that any failure in the applied control strategy can have severe consequences.
A variety of control strategies have been used to perform the automated steering
task, such as the classical feedback control algorithm, Model-Based Control,
Dynamic Control, and Adaptive Control [7], [8], [9], [10]. In this context, Model
Predictive Control (MPC) has become the most commonly used algorithm for the
autonomous vehicle steering system. The MPC controller solves an online
optimization problem with the ability to handle the system constraints (soft-hard)
by including them in the design process, which makes it a powerful strategy to deal
with the stability and the changing dynamics of the vehicle. On the other hand, with
the increase of the system complexity, the computational load of the MPC controller
is increased, since it solves the optimization problem in each time step, and it may
not be able to meet the real-time requirements. Additionally, MPC is resource-
consuming, which makes it invisible, especially when it comes to the limited
resources of embedded computing platforms such as system-on-chip (SoC) and
field-programmable gate array (FPGA) adaptive platforms [11], [12]. Recently,
Deep Neural Network (DNN) has gained attention and has been rapidly developed

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 167 ‒

and efficiently implemented with a variety of applications in different fields such
as image classification [14], natural language processing, and speech recognition
[15]. In contrast, to the classical control algorithms, which are mainly based on
tuning predefined parameters related to a determined environment [16], the
behavior of the deep neural network model is optimized based on the provided
information (self-optimized algorithm). In other words, the neural networks
algorithm bypasses the need for significant parameter tuning, which makes it more
efficient to model highly complex systems and to deal with unforeseen situations,
especially after being well trained and validated using sufficient datasets. Recently
the implementation of deep neural networks within the domain of robotic
applications has made massive progress and has provided promising results such as
perception and motion planning [17] and object detection and semantic
segmentation [18]. In contrast, to supervised learning, agents in Reinforcement
Learning (RL) are trained by directly interacting with their environment rather than
explicitly guiding the model on how to act based on the labeled data [19].
The performance of the RL agent is evaluated based on the reward function, where
the agent is trained to act in the environment in a way that maximizes the cumulative
reward in order to improve the performance [20]. RL has proven to be a powerful
method mainly in the domains of game playing and robotic manipulation [21], [22],
and RL algorithms are considered a promising potential solution for many other
applications, especially in cases where classical supervised learning is not
applicable. Although there are promising results achieved by the implementations
of reinforcement learning with different complex tasks related to automated driving,
RL is still an emergent field in this domain, where the implementations and
deployment of real-world applications are still very much an open challenge and
RL has not yet been applied to practice as successfully as supervised and
unsupervised learning. The main contributions of this work can be summarized in
two main points. The first is leveraging the advantages of reinforcement learning
and supervised learning by combining them in one control model in such a way that
the RL-based network optimizes the action that is taken by the supervised neural
network (DNN) and achieves a better generalization capability with the complex
driving environment. The second contribution comes in enriching the research on
RL algorithms and paving the way to bring RL closer to real-world
implementations. In [13], a classic MPC controller was designed and deployed on
FPGA for automated driving task, while in this paper three different machine
learning-based models are developed for the same task and compared to the
traditional MPC. The first model is a DNN-based model, which is designed and
trained using a supervised dataset obtained from the behavior of the classical MPC
controller. The second model is a reinforcement learning-based model (DQN)
which is designed and trained without any supervision data, but directly by
interaction with the environment. The third model is a hybrid one, which is a
combination between the DNN and reinforcement learning methods. The trained
DNN will be used as decision maker working beside another network (critic) within
a DDPG reinforcement model. The combined method is expected to provide an

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 168 ‒

optimized solution, as the actions that are taken by the decision maker (trained
DNN) will be evaluated and optimized by another neural network in order to
minimize errors. Additionally, the combined model will be able to deal with and
adapt to new cases that have not been faced during training.

The paper is organized and structured as follows: The second section provides
background, including the most common vehicle models and control strategies that
are used for autonomous driving, in addition to the work related machine learning
algorithms describing the main features and their implementations in the field of
autonomous driving. In the third section, the MPC controller and the design of the
suggested models are discussed. The implementations and the obtained results are
analyzed and discussed in the fourth section. Finally, the conclusions are provided
in the last section.

2 Background

In this section, an overview of the vehicle models, the control strategies of the path
tracking task, and the related machine learning algorithms are described.

2.1 Path Tracking and Related Works

Path tracking can be categorized into three main groups: geometric, kinematic, and
dynamic. Due to its simplicity, geometric path tracking is one of the most
commonly used models. In a geometric vehicle model, only the dimensions and the
position of the vehicle are taken into consideration with no regard to internal or
external forces, velocity, or acceleration. Geometric controllers are the most
common controllers in the field of path tracking due to their stability and simplicity,
where the state variables are simple with the absence of the derivatives. Follow the
Carrot, Pure Pursuit, and Stanley are the best-known geometric control strategies
[23]. Unlike the geometric vehicle model, the kinematic model describes the motion
of the vehicle taking into consideration the velocity and the acceleration with no
regard to its internal forces [24], [25]. Several interesting studies have emerged in
regard to kinematic controlling. Sun et al. [26] presented a study to address the
problem of path tracking for the autonomous vehicle and analyze the relationship
between the road model and path tracking method. De Luca et al. [27] provided a
comparison study of different feedback solutions for different tasks such as path
tracking and stabilization for a car-like robot (kinematic model). Kinematic and
Geometric models are effective for systems where there is no need to take the
internal and external forces into consideration. However, these forces should be
taken into consideration under specific conditions such as a sharp trajectory
curvature. Ignoring the vehicle dynamics under such conditions will negatively
affect the performance and the safety aspects. In a dynamic model, the motion of

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 169 ‒

the vehicle is described with respect to its position, velocity and �ccelerateon,
taking into considerations the applied internal and external forces such as the gravity
force [28], [29]. Taking the effects of the vehicle dynamics into consideration
naturally makes the dynamic controllers more efficient and stable than geometric
and kinematic controllers [30]. However, dynamic feedback (such as the torque) is
required for these control strategies, which in turns requires special types of sensors
and more data processing. Consequently, dynamic controllers are more expensive
in terms of the cost and computational loads [31]. An adaptive controller is also
used for autonomous vehicle tasks, developed to deal with systems which have
uncertain, unknown, or changeable parameters. Martins et al. [32] used an adaptive
controller for a vehicle path tracking task and their proposed model used the linear
and angular velocity as a reference signal. Artificial intelligence is widely used with
adaptive controllers in order to improve the control decisions in terms of speed and
accuracy. In paper [33], a lateral motion control method was provided where the
objective of the suggested method is to maintain the yaw stability and minimize the
tracking error. The control schema consists of two main modules, a steering
controller to ensure the yaw stability and an artificial neural network approximator
to estimate cornering stiffness uncertainty. In the field of AI in learning and control,
many related works are highlighted dealing with linear and nonlinear controllers.
In [34], [35], the authors of both papers use the linear controller as the classical PID
and Fuzzy controller for a linear system [36], [37], while others have focused on
using nonlinear controllers and learning algorithms as presented in [38], [39], [40].
Reference [41] reports a new Reinforcement Learning (RL)-based control approach
that uses Policy Iteration (PI) and a metaheuristic Grey Wolf Optimizer (GWO)
algorithm to train the Neural Networks (NNs). The GWO algorithm shows good
results in NN training and solving complex optimization problems.

2.2 Reinforcement Learning Algorithms and Related Works

Sequential decision making problems can be formulated by Markov Decision
Processes (MDPs), which is considered a bedrock of the problems that
reinforcement learning solves. MDPs consist of a decision maker (agent), set of
states (S), set of actions (T), transaction function (A), and reward function (R,)
which can be represented as a tuple <S, A, T, R>. At each time step (t), and based
on the received state (𝑆𝑆𝑡𝑡 ∈ 𝑆𝑆), the agent takes an action (𝐴𝐴𝑡𝑡 ∈ 𝐴𝐴) which represents
a pair (𝐴𝐴𝑡𝑡 ,𝑆𝑆𝑡𝑡) in the next time step. Based on the taken action the environment is
transitioned to a new 𝑆𝑆𝑡𝑡+1 ∈ 𝑆𝑆, and the agent receives a reward 𝑅𝑅𝑡𝑡+1 ∈ 𝑅𝑅, [42], [43]
(see Figure 1). The cumulative reward is simply represented as a sum of the
expected return at each time step. The probability of selecting an action by the agent
from all possible actions at all possible states is determined by the policy (𝜋𝜋) that
the agent follows. In addition to the probability of the selection action, the value
function evaluates how good it is for the agent to select an action at a given state
under a policy (𝜋𝜋), and this is called the action-value function (𝑞𝑞𝑞𝑞), or how good

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 170 ‒

it is for the agent to be at a given state following a policy (𝜋𝜋), and this is called the
state-value function (𝑣𝑣𝜋𝜋). Equations 1 and 2 are the mathematical representations
of the action-value and the state-value functions, respectively. The action-value
function 𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) is the expected reward (∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1∞

𝑘𝑘=1) starting from state (s) at
time (t), performing the action (a) and following the policy (𝜋𝜋), where the state-
value function 𝑣𝑣𝜋𝜋(s) is the expected reward starting from state (s) at time (t) and
following the policy (𝜋𝜋). It is worth mentioning that 𝑞𝑞𝜋𝜋 is also referred to as the Q-
function and its output is called the Q-value (the quality of taking an action). In
terms of optimality, the main goal of the RL algorithm is to select the optimal policy
that will yield the highest expected reward for each state. The optimal policy is
associated with an optimal state-value function (𝑣𝑣∗) and an optimal action-value
function (𝑞𝑞∗) or optimal Q-function, which are represented in equations 3 and 4,
respectively. The fundamental property that the optimal Q-function (𝑞𝑞∗) must
satisfy is the Bellman equation (see equation 5), where (𝑅𝑅𝑡𝑡+1) is the expected
reward that the agent obtains by taking the action (a) at state (s), whereas
𝛾𝛾max 𝑞𝑞∗(𝑠𝑠′, 𝑎𝑎′) is the maximum expected discounted reward that can be received
from any next state-action pair [44], [45]. Reinforcement learning is a category of
machine learning that studies the behavior of an agent and focuses on how this agent
might interact with its environment. The main goal of the agent is to maximize the
cumulative given rewards it receives over time in order to optimize its behavior in
such an environment [46]. Based on the fact that the agent is able to learn the value
function estimates or/and the policies directly, RL methods can be categorized into
three main methods: value-based methods, policy-based methods, and actor-critical
methods [47]. All of the methods share the same strategy of determining the actions
and evaluating the agent behavior, but the essential difference is where the
optimality resides.

𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝐸𝐸𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1∞
𝑘𝑘=1 |𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 = 𝑎𝑎) (1)

𝑣𝑣𝜋𝜋(𝑠𝑠) = 𝐸𝐸𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1∞
𝑘𝑘=1 |𝑆𝑆𝑡𝑡 = 𝑠𝑠) (2)

𝑣𝑣∗(𝑠𝑠) = max
𝜋𝜋

𝑣𝑣𝜋𝜋(𝑠𝑠) (3)

𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = max
𝜋𝜋

𝑞𝑞𝜋𝜋(𝑠𝑠) (4)

𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝐸𝐸𝜋𝜋 �𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 max
𝑎𝑎′

𝑞𝑞∗(𝑠𝑠′, 𝑎𝑎′)� (5)

Figure 1
Markov Decision Processes

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 171 ‒

2.2.1 Value-based Algorithm

Value-based methods aim to get the optimal cumulative reward and determine the
optimal policy that follows the recommendations. One of the most commonly used
reinforcement learning value-based algorithms is the Q-learning method [48].
The objective of Q-learning is to find the optimal policy by learning how to find the
optimal Q-value for the (𝑠𝑠, 𝑎𝑎) pair, where the Q-values are stored in a Q-table.
The Q-learning algorithm uses what is called the value iteration approach to
converge the Q-function to the optimal Q-function by iteratively updating the Q-
value for each (𝑠𝑠, 𝑎𝑎) pair using the Bellman equation. With the increase in
environment complexity, the state space size increases, and the performance of the
Q-learning method will drop off because of the value iteration strategy that is used
to update the Q-values (Q-table). The problem with large MDPs is that there are too
many states and/or actions to be stored in the memory, and it is too slow to calculate
the value for every individual state [49]. To overcome this problem, a function
approximation is used to estimate the values instead of using the value iteration.
The deep neural network is used as a function approximation and combined with
the Q-learning method. This method is called Deep Q-learning, where the Deep Q-
Network (DQN) approximates the Optimal-Q value [50]. The DQN model accepts
the state as an input and outputs the estimated Q-value for every possible action that
can be taken at that given state. After calculating the loss, the weights within the
neural network are updated by stochastic gradient descent (SGD), just like in any
other neural network.

2.2.2 Policy-based Algorithm

Like the value-based method, the policy-based method selects one possible action
and evaluates the agent’s behavior thereafter in order to achieve optimization.
The essential difference between the two methods is a matter of how to achieve
optimality. While the value-based method selects the optimal policy based on the
optimal cumulative reward, the policy-based method directly optimizes the policy
itself. The policy is parameterizes πθ(𝑠𝑠, 𝑎𝑎) and the optimization problem turns out
to be finding 𝜃𝜃, which maximizes the policy’s objective function 𝐽𝐽(𝜃𝜃) [48]. In other
words, policy-based methods learn how these parameters should change the
probabilities by which different actions can be taken in different states in order to
maximize the expected reward. The main advantage of policy-based methods is
their effectiveness for continuous action or the high dimensional space, where the
parameters of the ‘parameterized policy’ are adjusted instead of solving a
complicated maximization in every step. The policy gradients (PG) algorithm is
widely used to solve the problems of the continuous action space. The policy is
represented by a parametric probability distribution (see equation 6). In the PG
algorithm, the action (a) at state (s) is selected stochastically based on a vector of
parameters (𝜃𝜃), and by adjusting these parameters, the policy is driven in the
direction of increasing the cumulative reward [49]. Policy gradient is the derivatives

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 172 ‒

(vector of derivatives) of the policy’s objective function 𝐽𝐽(𝜃𝜃) with respect to the
parameters (𝜃𝜃) as shown in equation 7 [51]. The problem can be formalized as
shown in equation 8, considering (𝜏𝜏) is the agent’s trajectory, 𝑅𝑅(𝜏𝜏) is the
corresponding reward, (𝜋𝜋𝜃𝜃) is the parameterized policy and 𝑃𝑃(𝜏𝜏 ∣ 𝜃𝜃) is the
probability of the trajectory (𝜏𝜏) under the policy (𝜋𝜋𝜃𝜃). The policy gradients
algorithm searches for the local maximum by ascending the gradient of the policy
with respect to the parameters (𝜃𝜃). It seeks to increase the probabilities of the
trajectories that give the best return, as shown in equation 9. By reformulating the
probability of the trajectory 𝑃𝑃(𝜏𝜏 ∣ 𝜃𝜃) and decomposing the trajectory into (states –
actions), the policy gradients equation can be reformulated as shown in equation 10.
Instead of integrating over the spaces of both state and action as in the case of
stochastic policy gradients, deterministic policy gradients (DPG) integrates only
over the state space, which in turns leads to a reduced number of samples, especially
in the case of applications with large action states [48]. DPG is used in the
deterministic environment (no uncertainty) where it accepts a state as input and
outputs a single action πθ(𝑠𝑠) = 𝑎𝑎. On the other hand, the stochastic policy is always
needed to explore the complete state-action space. Based on that and for sufficient
exploration for the DPG algorithm, the actions are chosen according to stochastic
policy behavior, while learning a deterministic target policy. The policy that the
agent uses to determine its actions at a given state is called behavior policy, while
the policy that the agent uses to update the Q-value is called target policy. Learning
the policy can be achieved in two different algorithms, on-policy or off-policy [52].
In the case of on-policy learning, the behavior policy is the same as the target policy,
while they are different in the case of the off-policy learning algorithm.

𝜋𝜋𝜃𝜃 = 𝑃𝑃[𝑎𝑎 ∣ 𝑠𝑠,𝜃𝜃] (6)

∇𝜃𝜃𝐽𝐽(𝜃𝜃) =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃1
⋮

𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑛𝑛 ⎦

⎥
⎥
⎥
⎤

(7)

𝜃𝜃∗ = arg max
𝜃𝜃

𝐽𝐽(𝜃𝜃) = max
𝜃𝜃

� 𝑃𝑃(𝜏𝜏|𝜃𝜃)𝑅𝑅(𝜏𝜏)
𝜏𝜏

 (8)

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝜏𝜏 (∇𝜃𝜃 log𝑃𝑃(𝜏𝜏|𝜃𝜃)𝑅𝑅(𝜏𝜏)) (9)

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝜏𝜏 (∇𝜃𝜃 logπθ𝑃𝑃(𝑠𝑠|𝑡𝑡)) (10)

2.2.3 Actor-Critic Algorithm

Actor–critic algorithms combine the benefits of both value-based and policy-based
algorithms. The essential idea is that a value function approximator (critic) is used
to explicitly estimate the action-value function instead of using the return. These
algorithms deal with two different sets of parameters using two different
approximators, the critic and the actor. The critic updates the action-value function

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 173 ‒

parameters, while the actor updates the policy parameters based on the direction
that is suggested by the critic [53]. Actor-critic algorithms use an approximate
policy gradient as described in equation 11, where the 𝑄𝑄𝑊𝑊(𝑠𝑠, 𝑎𝑎) is the estimated
cation-value function. Deep Deterministic Policy Gradient (DDPG) is a model-free,
off-policy, actor-critic reinforcement learning algorithm that searches for the
optimal policy that maximizes the cumulative long-term return for the continuous
action environment. DDPG uses deep neural network-based approximators [44].
In the DDPG algorithm, the actor is used to approximate the optimal policy
deterministically, which is unlike the stochastic policy, where the policy learns the
probability distribution rather than actions. After the action is taken by the actor,
the critic evaluates that action in order to determine whether the new state is better
or worse than the expectation. That can be achieved by maintaining the Q-values of
the taken actions towards the target Q-values. RL has been applied to a variety of
autonomous driving tasks, [54], [55], [56], [57].

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝜋𝜋𝜃𝜃 (∇𝜃𝜃 logπθ(𝑠𝑠|𝑎𝑎)𝑄𝑄𝑤𝑤(𝑠𝑠, 𝑎𝑎)) (11)

2.3 Supervised Learning Compared to Reinforcement
Learning

Unlike RL methods where the agent learns by interacting with the environment
without any supervision data, in supervised learning, the agent learns using labeled
data sets. This means that the expert is explicitly guiding the model on how to act
based on the labeled data. In deep neural networks, for example, and during training,
the network approximates the future outputs for the observations and then compares
them with the labeled ones in order to reduce the error. Supervised learning is
mainly dedicated to dealing with two main categories of tasks, classification and
regression, whereas RL deals with Markov’s decision processes, policy learning,
and value learning. The simplicity and the speed of the convergence during the
training are the advantages of supervised learning compared to reinforcement,
where convergence to the optimal policy can be slow so it requires intensive time.
On the other hand, the efficiency of the supervised model is greatly affected by the
comprehensiveness of the training data-set. In the case of nonlinear and complex
systems such as driving system tasks, sufficient training data must be ensured in
order to provide an efficient and generalizable model in all complex driving
environments. The use of deep learning in a variety of fields has increased recently
due to new powerful processing technologies that reduce the training time and
improve performance. The deep neural network algorithm is a self-optimization
algorithm and it has the ability to adopt a new scenario, which enables the
developers to generalize the desired models. These features make deep learning
suitable for control applications within dynamic and complex environments.
The computational complexity and the advantages of the learning-based methods
compared to classical MPC are presented in the additional material, Section 2.3.
(See: [1])

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 174 ‒

3 Design of the Controllers

This section includes the designing process of the MPC, the DNN, the DQN and
the combined models. The DNN model is developed to imitate the behavior of the
MPC. The deep network of the DQN model will be designed with the same structure
as that of the DNN model. In the combined model, the trained DNN model is
combined with a Reinforcement DDPG algorithm as a decision maker. DQN and
Hybrid models were trained until the determined criteria are achieved (desired
reward, number of episodes, ... etc.)

3.1 Design of the MPC Controller

Since the MPC is a model-based controller, the first step in the design process is to
design the vehicle model. Figure 2 shows the global position of the vehicle, while
equations 12, 13 and 14 are the mathematical representation of the vehicle dynamic.
Figure 3 shows the MPC model, while the input-output signals, the parameters, and
the constraints of the MPC are presented in Table 1. During the designing process,
the parameters of the MPC are initiated based on standard recommendations and
were tuned during the testing until a stable behaviour is achieved. A detailed
explanation about MPC optimization problem, Performance specifications, control
law, and parameter calculations can be found in [1], section (3.1).

Figure 2

Global position of the vehicle

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 175 ‒

Figure 3

MPC controller design

𝑑𝑑
𝑑𝑑𝑑𝑑
�

𝑣𝑣𝑦𝑦
𝜔𝜔
𝑑𝑑
𝜃𝜃
� = 𝐴𝐴 �

𝑣𝑣𝑦𝑦
𝜔𝜔
𝑑𝑑
𝜃𝜃
� + 𝐵𝐵 �𝛿𝛿

𝜌𝜌�

(12)

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

2𝑐𝑐𝑓𝑓 + 2𝐶𝐶𝑟𝑟
𝑚𝑚𝑣𝑣𝑥𝑥

−
2𝑐𝑐𝑓𝑓𝑙𝑙𝑓𝑓 − 2𝑐𝑐𝑟𝑟𝑙𝑙𝑟𝑟

𝑙𝑙𝑧𝑧𝑣𝑣𝑥𝑥
1
0

−𝑣𝑣𝑥𝑥 −
2𝑐𝑐𝑓𝑓𝑙𝑙𝑓𝑓 − 2𝑐𝑐𝑟𝑟𝑙𝑙𝑟𝑟

𝑚𝑚𝑣𝑣𝑥𝑥

−
2𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓2 − 2𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟2

𝑙𝑙𝑧𝑧𝑣𝑣𝑥𝑥
0
1

0
0
0
0

0
0
𝑣𝑣𝑥𝑥
0
⎦
⎥
⎥
⎥
⎥
⎥
⎤

(13)

𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

2𝑐𝑐𝑓𝑓
𝑚𝑚

2𝑐𝑐𝑓𝑓𝑙𝑙𝑓𝑓
𝑙𝑙𝑧𝑧

0
0

0
0

0
1⎦
⎥
⎥
⎥
⎥
⎤

(14)

where 𝑣𝑣𝑥𝑥 is longitudinal velocity; 𝑣𝑣𝑦𝑦 is lateral velocity; 𝑑𝑑 is lateral deviation; 𝑐𝑐𝑓𝑓 is
the corner stiffness of front tires; 𝑙𝑙𝑟𝑟 is the distance between the rear tire and the
center of the gravity; 𝐼𝐼𝑧𝑧 is yaw moment; 𝑚𝑚 is the vehicle’s mass, 𝜔𝜔 is yaw rate; 𝛿𝛿 is
steering angle; 𝜃𝜃 is yaw angle; 𝑐𝑐𝑟𝑟 is the corner stiffness of rear tires; 𝑙𝑙𝑓𝑓 is the distance
between the front tire and the center of gravity; and 𝜌𝜌 is the curvature.

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 176 ‒

Table 1
Design parameters and system constraints of the MPC controller

Internal model
(vehicle)

Input signals
Steering angle (𝛿𝛿)
Disturbance (𝜌𝜌 𝑣𝑣𝑥𝑥)

Output signals

Lateral deviation (𝑑𝑑)
Yaw angle (𝜔𝜔)

Lateral velocity (𝑣𝑣𝑦𝑦)
Yaw rate (𝜔𝜔)

Parameters of
MPC model

Sample time (𝑇𝑇𝑠𝑠) 0.1 seconds
Prediction horizon (𝑃𝑃) 2 seconds
Control horizon (𝑀𝑀) 2 seconds

Constraints
Steering angle [-1.04, 1.04] rad
Changing rate [-0.26, 0.26] rad

3.2 Design of the DNN model Using Imitation Learning

To achieve imitation learning, the DNN model was designed and structured based
on the MPC model, where six observations are determined as inputs (𝜃𝜃, 𝑣𝑣𝑦𝑦 ,𝑑𝑑,𝜔𝜔,𝜌𝜌,
𝛿̂𝛿) and one control action (𝛿𝛿) was determined as an output, where (𝛿̂𝛿) is the previous
control action. The detailed structure is shown in Figure 4. In regard to the training
options, Adaptive Moment Estimation (ADMA) is used as an optimizer, the
maximum number of Epoch is set to be 40, the mini-batch for each iteration is set
to be 420, and the initial learning rate is set to be 0.01. Data preparation and training
process of the MPC controller is presented in [1], Section 3.2.1

Figure 4
The DNN model structure

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 177 ‒

3.3 Design of the Reinforcement Deep Q-Learning Model

The desired DQN model is designed taking into consideration the same dynamics
of the vehicle, the constraints, and the environment conditions that were used
previously. The designing processes went through several steps, preparing the
environment, creating and training the agent and finally testing and evaluating the
performance. The environment is created using the six observations and the control
action space was determined as a discrete space in the range of [-1.04, 1.04] rad,
meaning that the agent can apply 121 possible actions at each state. Based on that,
the deep Q-network is designed to accept the state from the environment as an input
(vector with 6 observations) and outputs the estimated Q-values of each possible
discrete action that can be taken at that state (vector of n=121 Q values).
The detailed structure of the DQN model is shown in Figure 5. The target DQN,
which is used to calculate the target Q-values is a clone of the DQN with the same
structure and parameterization. The training details of the DQN model are presented
in [1] Section 3.3.1.

Figure 5

The reinforcement DQN structure

3.4 Design of the Combined (Supervised–RL) Model

The same vehicle’s dynamics, constraints, environment conditions and state space
are used to design and test the combined model. The continuous actions space is
determined to be in the range of [-1.04, 1.04] rad. In order to create the agent, beside
having the trained DNN model as an actor, the critic is created based on the actions-
observations specifications, where the neural network is structured to accept two
inputs (state-action) and one output (the corresponding expected long-term reward
𝑄𝑄 (𝑠𝑠, 𝑎𝑎 ∣ 𝜃𝜃𝑄𝑄), and 3 hidden layers. Figure 6 shows the detailed structure of the
combined model. The training process is presented in Section 3.4.1 of [1]

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 178 ‒

Figure 6

The structure of the actor-critic networks - combined model

4 Results and Discussion

The implementations of the designed models were performed using the same
vehicle model and subjected to the same constraints, environmental conditions, and
initial state. The performance is analyzed and evaluated taking into consideration
the performance of the MPC controller as a reference behavior. The efficiency is
discussed based on different indicators: the ability of the controllers to drive the
vehicle along the desired trajectory in the first place, the time needed to reach a
stable state, and the smoothness of the driving system. The obtained results in
Figure 7 clearly show that the trained DNN and the MPC controller behave similarly
with very small output deviation, where the maximum difference is approximately
0.0094 rad (0.53 degrees). The behavior is evaluated based on the response of the
vehicle to the controllers' outputs. Figure 8 shows vehicle response to the control
actions of the MPC and the DNN models in terms of lateral deviation and Figure 9
shows that both controllers (MPC-DNN) were able to follow the desired trajectory
by driving the lateral deviation and yaw angle to be very close to zero. Additionally,
and taking into consideration the control system characteristics, the results clearly
show that both controllers were able to reach the stable state at almost the same time
with the same amount of overshooting. These results prove that the trained DNN
model was able to imitate the behavior of the traditional MPC controller
successfully. Based on that, the performances of the reinforcement DQN model and
combined model are compared to the DNN model in order to evaluate the best result
achieved by the machine-learning-based models. Figure 10 shows that the three
models responded differently to the same initial state. Despite these differences,
Figures 11 and 12 show that the reinforcement DQN and the combined models were
able to track the desired trajectory with different control system characteristics

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 179 ‒

(steady state time and overshooting). The detailed results showed that the combined
model responded in a way that improved the smoothness of the driving system by
reducing the overshooting (with hardly any overshooting in the case of lateral
deviation) and drove the lateral deviation to be very close to zero (0.003 m) in a
reasonable time, compared to the DNN model which achieved 0.0009 m as a final
value of the lateral deviation at almost the same time but with higher overshooting
and thus higher lateral deviations. The DQN model was not as efficient as the other
models; its behavior led to higher overshooting and drove the lateral deviation to a
final value of 0.01 m. As a result, and taking all the performance indicators into
considerations, one can state that the combined model provided the best result and
achieved the expected optimization by demonstrating accurate control actions
(steering angles) that steer the vehicle along the desired trajectory efficiently in a
reasonable time and improve the robustness of the driving system, while the DQN
model, which is completely based on an RL algorithm, was not as efficient as the
other two models (the supervised DNN or the combined model). The promising
results that are provided by the reinforcement learning methods (DQN and Hybrid
model) emphasize the importance of devoting more efforts to transferring them into
practice as an efficient alternative to classical control methods.

Figure 7

Comparison of the estimated steering angles of the MPC and the DNN models

Figure 8

Vehicle response to the control actions of the MPC and the DNN models - lateral deviation

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 180 ‒

Figure 9

Vehicle response to the control actions of the MPC and the DNN models - yaw angle

Figure 10

Comparison of the estimated steering angles of the DNN, DQN, and combined models

Figure 11

Vehicle response to the control actions of the DNN, DQN - lateral deviation

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 181 ‒

Figure 12

Vehicle response to the control actions of the DNN, DQN - yaw angle

Conclusions

In this work three different machine learning-based models were designed to
perform an automated path-tracking task: a DNN model to imitate the behavior of
the traditional MPC controller, a reinforcement learning DQN model, and a hybrid
model. The hybrid model was designed to optimize the performance by combining
the trained DNN model with the reinforcement learning model, where the DNN
network was used as a decision-maker along with the critic network that evaluates
the actions taken. The results showed that all three models were able to drive the
vehicle along the desired path. The combined model was able to provide the desired
optimization by driving the vehicle to the reference speed more smoothly and within
a reasonable time. This work shows the efficiency of combining supervised and
reinforcement learning to leverage the advantages of both algorithms, where the
supervised learning speeds up the learning process and the reinforcement learning
improves self-adaptation to new states that the model was not faced within the
training process, which increases efficiency in the complex driving environment.

References

[1] A. Reda, R. Benotsmane, A. Bouzid, J. Vásárhelyi: Additional material for a
Hybrid Machine Learning-Based Control Strategy for Autonomous Driving
Optimization paper Acta1034; submitted to Acta Polytechnica Hungarica
ISSN, https://drive.google.com/drive/folders/14hjWFoAxhHnWi18W-
iO23QZe2btwF-de, See: Additional-material-ACTA-1034.pdf, 2023, p. 11

[2] C. Thorpe, M. Herbert, T. Kanade, S. Shafter: Toward autonomous driving:
the CMU Navlab. II. Architecture and systems, in IEEE Expert, Vol. 6, No.
4, 1991, pp. 44-52

[3] E. Dickmanns, A. Zapp: Autonomous high speed road vehicle guidance by
computer vision 1, IFAC Proc. Volumes, Vol. 20, No. 5, 1987, pp. 221-226

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 182 ‒

[4] SAE: On-Road Automated Vehicle Standards Committee, Taxonomy and
Definitions for Terms Related to On-Road Motor Vehicle Automated
Driving Systems, Technical Report, 2014, pp. 1-6

[5] U.S Department of Transportation: Preparing for the Future of
Transportation: Automated Vehicles 3.0, 2018,
https://www.transportation.gov/av/3, last visited December 2022

[6] B. Aelbachir, J. C. Smal, J. C. Blosseville, D. Gruyer: Simulation-driven
validation of advanced driving-assistance systems, Procedia-Social and
Behavioral Sciences, Vol. 48, 2012, pp. 1205-1214

[7] S. Hima, S. Glaser, A. Chaibet, B. Vanholme: Controller design for trajectory
tracking of autonomous passenger vehicles, 4th International IEEE
Conference on Intelligent Transportation Systems (ITSC), 2011, pp. 1459-
1464

[8] X. Li, Z. Wang, J. Zhu, Q. Chen: Adaptive tracking control for wheeled
mobile robots with unknown skidding, 2015 IEEE Conference on Control
Applications (CCA), 2015, pp. 1674-1679

[9] X. Wu, P. Lou, D. Tang, J. Yu: An intelligent-optimal predictive controller
for path tracking of Vision-based Automated Guided Vehicle, 2008
International Conference on Information and Automation, 2008, pp. 844-849

[10] C. Sun, X. Zhang, Q. Zhou, Y. Tian: A Model Predictive Controller With
Switched Tracking Error for Autonomous Vehicle Path Tracking, in IEEE
Access, Vol. 7, 2019, pp. 53103-53114

[11] J. B. Rawlings, D. Q. Mayne: Model Predictive Control: Theory and Design,
Nob Hill Publishing, Madison, 2009

[12] M. Brown, J. Funke, S. Erlien, J. C. Gerdes: Safe driving envelopes for path
tracking in autonomous vehicles, Control Engineering Practice, vol. 61,
2017, pp. 307-316

[13] A. Reda, A. Bouzid, J. Vásárhelyi: Model predictive control for automated
vehicle steering, Acta Polytechnica Hungarica, Vol. 17, 2020, pp. 163-182

[14] A. Krizhevsky, I. Sutskever, G. E. Hinton: ImageNet classification with deep
convolutional neural networks, Commun. ACM, Vol. 60, No. 6, 2017, pp.
84-90

[15] L. Deng, J. Li, J. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X.
He, J. Williams, Y. Gong, A. Acero, Recent advances in deep learning for
speech research at Microsoft, 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013, pp. 8604-8608

[16] S. Kuutti, R. Bowden, Y. Jin, P. Barber, S. Fallah: A Survey of Deep
Learning Applications to Autonomous Vehicle Control, in IEEE
Transactions on Intelligent Transportation Systems, Vol. 22, No. 2, 2021, pp.
712-733

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 183 ‒

[17] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, C. Cadena: From perception
to decision: A data-driven approach to end-to-end motion planning for
autonomous ground robots, In 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1527-1533

[18] R. Girshick, J. Donahue, T. Darrell, J. Malik: Rich feature hierarchies for
accurate object detection and semantic segmentation, in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580-
587

[19] M. Batta: Machine learning algorithms - a review. International Journal of
Science and Research (IJSR), 2020, pp. 381-386

[20] Y. Li, H. Li, Z. Li, H. Fang, A. Sanyal, Y. Wang, Q. Qiu: Fast and Accurate
Trajectory Tracking for Unmanned Aerial Vehicles based on Deep
Reinforcement Learning, 2019 IEEE 25th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA),
2019, pp. 1-9

[21] S. Gu, E. Holly, T. Lillicrap, S. Levine: Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates, IEEE
International Conference on Robotics and Automation, 2017, pp. 3389-3396

[22] A. B. Martinsen, A. M. Lekkas: Curved Path Following with Deep
Reinforcement Learning: Results from Three Vessel Models, OCEANS
2018 MTS/IEEE Charleston, 2018, pp. 1-8

[23] S. Bacha, M. Y. Ayad, R. Saadi, A. Aboubou, M. Bahri, M. Becherif:
Modeling and control technics for autonomous electric and hybrid vehicles
path following, 2017 5th International Conference on Electrical Engineering
- Boumerdes (ICEE-B), 2017, pp. 1-12

[24] G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, L. B. Becker:
A Predictive Controller for Autonomous Vehicle Path Tracking, IEEE
Transactions on Intelligent Transportation Systems, Vol. 10, No. 1, 2009, pp.
92-102

[25] J. Wang, J. Steiber, B. Surampudi: Autonomous ground vehicle control
system for high-speed and safe operation, International Journal of Vehicle
Autonomous Systems, Vol. 7, No. 1, 2009, pp. 18-35

[26] Z. Sun, Q. Chen, Y. Nie, D. Liu, H. He: Ribbon Model based path tracking
method for autonomous land vehicle, 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 1220-1226

[27] A. De Luca, G. Oriolo, C. Samson: Feedback control of a nonholonomic car-
like robot, In Robot motion planning and control, Springer, Berlin, 1998, pp.
171-253

[28] N. H. Amer, H. Zamzuri, K. Hudha, Z. A. Kadir: Modelling and control
strategies in path tracking control for autonomous ground vehicles: A review

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 184 ‒

of state of the art and challenges, Journal of Intelligent $\&$ Robotic
Systems, Vol. 86, No. 2, 2017, pp. 225-254

[29] E. Lucet, R. Lenain, C. Grand: Dynamic path tracking control of a vehicle
on slippery terrain, Control Engineering Practice, Vol. 42, 2015, pp. 60-73

[30] C. Poussot-Vassal, O. Sename, L. Dugard, S. M. Savaresi: Vehicle dynamic
stability improvements through gain-scheduled steering and braking control,
Vehicle System Dynamics: International Journal of Vehicle Mechanics and
Mobility, Vol. 49, No. 10, 2011, pp. 597-1621

[31] P. Zhao, J. Chen, T. Mei, H. Liang: Dynamic motion planning for
autonomous vehicle in unknown environments, IEEE Intelligent Vehicles
Symposium (IV), 2011, pp. 284-289

[32] F. N. Martins, W. C. Celeste, R. Carelli, M. S.-Filho, T. F. B.-Filho: An
adaptive dynamic controller for autonomous mobile robot trajectory
tracking, Control Engineering Practice, Vol. 16, No. 11, 2008, pp. 1354-1363

[33] X. Ji, X. He, C. Lv, Y. Liu, J. Wu: Adaptive-neural-network-based robust
lateral motion control for autonomous vehicle at driving limits, Control
Engineering Practice, Vol. 76, 2018, pp. 41-53

[34] C. Sun, X. Zhang, L. Xi, Y. Tian: Design of a path-tracking steering
controller for autonomous vehicles, Energies, Vol. 11, No. 6, 2018, p. 1451

[35] A. J. Babqi and B. Alamri: A comprehensive comparison between finite
control set model predictive control and classical proportional-integral
control for grid-tied power electronics devices, Acta Polytechnica
Hungarica, Vol. 18, No. 7, 2021, pp. 67-87

[36] R. E. Precup, S. Preitl, E. M. Petriu, J. K. Tar, M. L. Tomescu, C. Pozna:
Generic two-degree-of-freedom linear and fuzzy controllers for integral
processes, J Franklin Inst, Vol. 346, No. 10, 2009, pp. 980-1003

[37] Zs. Preitl, R. E. Precup, J. K. Tar, M. Takács: Use of Multi-parametric
Quadratic Programming in Fuzzy Control Systems, Acta Polytechnica
Hungarica, Vol. 3, No. 3, ISSN 1785-8860, 2006, pp. 29-43

[38] T. Chen, A. Babanin, A. Muhammad, B. Chapron, and C. Chen: Modified
Evolved Bat Algorithm of Fuzzy Optimal Control for Complex Nonlinear
Systems, ROMJIST, Vol. 23, No. 672, 2020, pp. 28-40

[39] H. Redjimi, J. K. Tar: Multiple Components Fixed Point Iteration in the
Adaptive Control of Single Variable 2nd Order Systems, Acta Polytechnica
Hungarica, Vol. 18, No. 9, 2021, pp. 69-86

[40] A. Reda, J. Vásárhelyi: Model-Based Control Strategy for Autonomous
Vehicle Path Tracking Task, Acta Universitatis Sapientiae, Electrical and
Mechanical Engineering, Vol. 12, No. 1, 2020, pp. 35-45

Acta Polytechnica Hungarica Vol. 20, No. 9, 2023

‒ 185 ‒

[41] A. Zamfirache, R. E. Precup, R. C. Roman, and E. M. Petriu: Policy Iteration
Reinforcement Learning-based control using a Grey Wolf Optimizer
algorithm, Inf Sci, Vol. 585, 2022, pp. 162-175

[42] S. Sharifzadeh, I. Chiotellis, R. Triebel, D. Cremers: Learning to drive using
inverse reinforcement learning and deep Q-networks, arXiv preprint
arXiv:612.03653, 2016, Available: http://arxiv.org/abs/1612.03653

[43] M. L. Puterman: Markov decision processes: discrete stochastic dynamic
programming, John Wiley $\&$ Sons, New York, 1994

[44] R. A. Howard: Dynamic Programming and Markov Processes, Cambridge,
MA, USA: MIT Press, 1960

[45] R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction,
Cambridge, MA: MIT Press, 1998

[46] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau: An
Introduction to Deep Reinforcement Learning, Foundations and Trends in
Machine Learning, Vol. 11, No. 3-4, 2018, pp. 219-354

[47] Y. Li: Deep reinforcement learning: An overview, arXiv preprint
arXiv:1701.07274, 2017

[48] K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath, Deep
Reinforcement Learning: A Brief Survey, in IEEE Signal Processing
Magazine, Vol. 34, No. 6, 2017, pp. 26-38

[49] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
D. Wierstra: Continuous control with deep reinforcement learning, ICRL,
2016

[50] V. Mnih et al.: Human-level control through deep reinforcement learning,
Nature, Vol. 518, No. 7540, 2015, pp. 529-533

[51] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour: Policy gradient
methods for reinforcement learning with function approximation, Advances
in Neural Information Processing Systems, 2000, pp. 1057-1063

[52] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller:
Deterministic policy gradient algorithms, In International conference on
machine learning, 2014, pp. 387-395

[53] J. C. Jesus, J. A. Bottega, M. A. S. L. Cuadros, D. F. T. Gamarra: Deep
Deterministic Policy Gradient for Navigation of Mobile Robots in Simulated
Environments, International Conference on Advanced Robotics (ICAR),
2019, pp. 362-367

[54] A. E. Sallab, M. Abdou, E. Perot, S. Yogamani: End-to-end deep
reinforcement learning for lane keeping assist, MLITS, NIPS Workshop,
Vol. 2, 2016

A. Reda et al. A Hybrid Machine Learning-based Control Strategy for Autonomous Driving Optimization

‒ 186 ‒

[55] P. Wang, C.-Y. Chan, A. de La Fortelle: A reinforcement learning based
approach for automated lane change maneuvers, IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2018, pp. 1379-1384

[56] Z. Huang, X. Xu, H. He, J. Tan, Z. Sun: Parameterized batch reinforcement
learning for longitudinal control of autonomous land vehicles, IEEE
Transactions on Systems, Man, and Cybernetics: Systems, Vol. 49, No. 4,
2017, pp. 730-741

[57] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, J. W. Choi: Autonomous
braking system via deep reinforcement learning, IEEE 20th International
conference on intelligent transportation systems (ITSC), 2017, pp. 1-6

	1 Introduction
	2 Background
	2.1 Path Tracking and Related Works
	2.2 Reinforcement Learning Algorithms and Related Works
	2.2.1 Value-based Algorithm
	2.2.2 Policy-based Algorithm
	2.2.3 Actor-Critic Algorithm

	2.3 Supervised Learning Compared to Reinforcement Learning

	3 Design of the Controllers
	3.1 Design of the MPC Controller
	3.2 Design of the DNN model Using Imitation Learning
	3.3 Design of the Reinforcement Deep Q-Learning Model
	3.4 Design of the Combined (Supervised–RL) Model

	4 Results and Discussion

