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Abstract: In this paper a new type of passive mechanism for vibration suppression is 

introduced. The mechanism is based on the system of cantilever – mass units (dynamic 

absorbers) connected to the basic structure. The support of cantilevers is rigid or even 

elastic. The vibration of the system is caused by external excitation force which acts on the 

basic structure. The aim of the paper is to determine the parameters of the system for which 

the frequency gap and the vibration suppression occur. The used mathematical model is a 

system of coupled equations where the measured parameters are introduced by the 

application of a newly developed, so-called, ‘elastic support method’. Solving the 

mathematical model, the amplitude-frequency vibration property of the system is obtained. 

The computed solution is compared with that the previously published result of the 

‘wallpaper’ type metastructure for vibration suppression, which is modeled as a system of 

translation moving system of mass-in-mass units. It is concluded that the effect of the 

suggested mechanism is in good agreement with that of the metastructure for vibration 

suppression. The resonances of the two models are matched with the results of Inventor Finite 

Element Analysis, too. Difference in results is negligible. 

Keywords: “wallpaper”-like metamaterial; cantilever-mass mechanism; vibration 

suppression; 5-DoF system; natural-frequency 

1 Introduction 

Recently, mechanical metastructures and metamaterials are developed for 

suppression or elimination of vibration. Metamaterials and metastructures are 

artificially composed systems containing a basic mass in which small masses are 

added [1-4]. The added masses have the role of vibration absorbers. Opposed to the 

conventional materials, the metastructure absorbers are integrated into the basic 

material [5]. Metastructures are modeled as complex systems of mass-in-mass units 

where properties of the added mass-spring unit satisfy the condition for dynamic 

absorber of the basic mass [6-9]. Various types of metastructures are already 
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developed: in-line 1D or bar structures [10-13], space structures [14-15] and plane 

or wall panels [16-18]. The main disadvantage of all of these metastructures is the 

complexity of their fabrication. The new types of metastructures have absorbers 

made of the same material as the basic structure and the system is constructed as a 

single unit. The 3D printing technique allows creation of such structures, with 

extremely complex geometries tuned for broadband vibration suppression, for 

example a square structure inside of which mass as absorbers act [19-21] or stick – 

like resonator [22]. Such 3D-printed metastructures are suitable for passive 

vibration suppression. In addition, the structures remain capable of bearing loads 

without adding additional mass. For all of the mentioned metamaterials, it is 

common that they suppress vibration in certain frequency region [23, 24], and the 

width of the band gap, where the decrease of the amplitude of vibration occurs, is 

very small. 

To eliminate these lacks, the system with the higher number of dynamic absorbers 

[25] and nonlinear properties [26] are introduced. Thus, the ‘wallpaper’-like 

metastructure which contains 5 different dynamic absorbers is able to admit 5 

different vibration frequencies [18]. In spite of the fact that the design seems to be 

simple (between a basic plane and an external surface with cups masses are settled 

(see Fig. 1) which move translator up and down due to the action of the vertical 

external excitation), fabrication with proper values for vibration suppression is not 

an easy task. 

In this paper the new multicantilever-mass mechanism for vibration suppression is 

developed. 

The aim of the new mechanism is to eliminate vibration on certain frequencies, of 

all the unwilling ones. The requirements for vibration elimination directly influence 

the design of the mechanism and the number of cantilever-mass dynamic absorbers. 

In the paper, dynamics of the mechanism is mathematically modeled. Parameters of 

the model are included by using the new, so-called ‘elastic support method’, 

springing from measured values. After solving the equation of the oscillatory 

motion, the results are applied for parameter analysis of the mechanism. The new 

mechanism with 5 cantilever-masses is compared with the 5-DoF wallpaper like 

metastructure. It is observed that the comparison is possible and that the parameters 

of the new model are more controllable than the previously developed wallpaper 

like metastructure with the translation motion of masses. The resonance cases of 

both models are matched using of Inventor Finite Element Analysis. Difference in 

results is negligible. 

The paper has 5 sections. After the introduction in Section 2, the physical and 

mathematical model of the cantilever-mass mechanism is developed. The system is 

described with n linear coupled second order differential equations. In Section 3, a 

new method for calculation of the stiffness of the elastic support is developed. In 

Section 4, the amplitude-frequency vibration property of the 5-DoF cantilever-mass 

mechanism is obtained. The result is compared with that obtained for the 5-DoF 
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‘wallpaper’ type mechanism with translator motion. The solution is matched with 

the results of Inventor Finite Element Analysis (FEA) of the 3D solid body.  

The paper ends with conclusions. 

2 Model of the Mechanism 

In this section, the physical and mathematical model of the cantilever-mass 

mechanism is developed. 

2.1. Physical Model of the Cantilever-Mass Mechanism 

Based on the principle of the ‘wallpaper’ metastructure, but keeping the practical 

needs of measuring in mind, the translational model (Fig. 1) is changed into the 

cantilever beam model (Fig. 2). The cantilever-mass mechanism for vibration 

suppression is physically modelled as a system of beams clamped at one end with 

concentrated masses on the other end, which are attached to the primary structure. 

The primary structure is modelled as a clamped beam-mass unit (Fig. 2a), where 

the rigidity of the beam is EI1 and the mass is m1. On the mass m1, the periodic 

excitation force F(t) acts, which causes vibrations. Each added unit, which 

represents a dynamic absorber, contains a cantilever of transversal rigidity EIi, a 

length bi, and concentrated mass mi. Only one damper with coefficient k1 remained. 

The number of units is not limited, it depends on the requirement for elimination of 

vibrations of the basic element 1. 

 a) b) 

Figure 1 

“Wall-paper”-like metastructure: a) Exploded view of the 3D model; b) 5-DoF translational model 
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a) b) 

Figure 2 

The 5-DoF cantilever-mass mechanism: a) 3D solid body model; b) Scheme of model 

2.2. Mathematical Model of the Cantilever-Mass Mechanism 

Let us consider the mathematical model of the multicantilever-mass mechanism 

where on the basic structure 1, the i=2,3,…n absorber units are attached (see Fig. 

2b). It is supposed that the beam bending is in one plane. In addition, the movement 

of discrete masses is assumed to be in-line. 

The bending position of each mass mj is obtained by applying the Betti theorem 

summarizing the deflection of the mass m1 caused by the external force, deflections 

of mj due to external and inertial force and the displacement caused by interaction 

between added masses of the absorber. 

Using the linear bending theory, the displacement of the mass m1 under influence 

of the force F1 is obtained as 

𝑦𝐵 =
𝐹1𝑎3

3 𝐼1𝐸
 (1) 

where a is the position of the mass, i.e. the length of the beam 1. It gives the inverse 

rigidity coefficient 

𝑐11 =
𝑦𝐵

𝐹1
=

𝑎3

3 𝐼1𝐸
 (2) 

However, the force F1 causes bending of all beams in the system and the bending 

position of masses mi are 

𝑦𝐶𝑖 =
𝐹1𝑎2(2𝑎+3𝑏𝑖)

6 𝐼1𝐸
 (3) 

The corresponding inverse rigidity coefficients are 

𝑐1𝑖 =
𝑎2(2𝑎+3𝑏𝑖)

6 𝐼1𝐸
 (4) 

where i=2,3,...n.  

According to the force Fi, which directly acts on mi, the displacements are 



Acta Polytechnica Hungarica Vol. 19, No. 7, 2022 

‒ 201 ‒ 

𝑦𝐶𝑖 =
𝐹𝑖𝑎(𝑎2+3𝑎𝑏𝑖+3𝑏𝑖

2)

3 𝐼1𝐸
+

𝐹𝑖𝑏𝑖
3

3 𝐼𝑖𝐸
 (5) 

and the inverse rigidity coefficients follow as 

𝑐𝑖𝑖 =
𝑎(𝑎2+3𝑎𝑏𝑖+3𝑏𝑖

2)

3 𝐼1𝐸
+

𝑏𝑖
3

3 𝐼𝑖𝐸
 (6) 

The force Fi which acts on mi has also an influence on the other masses mj of the 

mechanism. Thus, for i,j=2,3,...n, i≠j the displacement is 

𝑦𝐶𝑖 =
𝐹2𝑎3

3 𝐼1𝐸
+

𝑏2𝐹2𝑎2

2 𝐼1𝐸
+ (

𝐹2𝑎2

2 𝐼1𝐸
+

𝑏2𝐹2𝑎

𝐼1𝐸
) 𝑏3 =

𝐹𝑖𝑎(2𝑎2+3𝑎𝑏𝑖+3𝑎𝑏𝑗+6𝑏𝑖𝑏𝑗)

6 𝐼1𝐸
 (7) 

and the corresponding inverse rigidity coefficient 

𝑐𝑖𝑗 =
𝑎(2𝑎2+3𝑎𝑏𝑖+3𝑎𝑏𝑗+6𝑏𝑖𝑏𝑗)

6 𝐼1𝐸
 (8) 

Remark: There is the symmetry of the rigidity coefficients, and for i≠j it yields 

cij=cji, where i,j=2,3,...n. 

Using the previous consideration, the total deflection of each mass (including the 

mass m1) is calculated as 

𝑦𝑖 + ∑ 𝑐𝑖𝑗𝐹𝑗 = 0        𝑖 = 2,3 … 𝑛𝑛
𝑗=1  (9) 

Introducing the inertial, damping and excitation force acting on mass m1, 

𝐹1 = 𝑚1𝑦̈1 + 𝑘1𝑦̇1 − 𝐹0 sin 𝜔𝑔𝑡 (10) 

and forces acting on masses mj, where j=2,3,...n 

𝐹𝑗 = 𝑚𝑗𝑦̈𝑗 + 𝑘𝑗𝑦̇𝑗 (11) 

the system of differential equations of motion for the system follows as 

𝑴𝒚̈ + 𝑲𝒚̇ + 𝑪−𝟏𝒚 = 𝑭 (12) 

where C is the symmetric matrix of the inverse rigidity coefficients, K is the 

damping matrix, M is the mass matrix, i.e. 

𝑪 = [

𝑐11 𝑐12 … 𝑐1𝑛

𝑐21 𝑐22 … 𝑐2𝑛

… … … …
𝑐𝑛1 𝑐𝑛2 … 𝑐𝑛𝑛

],  𝑲 = [

𝑘1 0 … 0
0 𝑘2 … 0
… … … …
0 0 … 𝑘𝑛

],  𝑴 =

[

𝑚1 0 … 0
0 𝑚2 … 0
… … … …
0 0 … 𝑚𝑛

] 

𝒚 = [𝑦1, 𝑦2, … . , 𝑦𝑛] and 𝑭 =

[𝐹0𝑠𝑖𝑛𝜔𝑔𝑡, 0, … . , 0].  (13) 
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The equation (12) is a system of n coupled second order differential equations which 

describes the absorber motion. Solving the system (12), the amplitude-frequency 

relations are obtained. 

3 Model of the Beam Fixed in an Elastic Support 

The model (12) corresponds to the case when masses of cantilevers are omitted.  

If the mass of the cantilever is as significant as the value of added mass, it has to be 

taken into consideration. It is supposed that the mass of the beam is continually 

distributed along its length, the total mass of the basic beam is mr1, while the masses 

of the beams in mechanism are mri, where i=2,3,…n. Reducing masses of beams in 

the position B of the basic mass (Fig. 3a) the total masses mred1 and mredi (i=2,3,…n) 

are obtained. 

Thus, for the system which contains only one added cantilever beside the basic one 

(Fig. 3a), the reduced mass in B is obtained by equating the kinetic energy of the 

distributed and point masses, i.e. 

1

2
𝑚𝑟𝑒𝑑1𝑦̇𝐵

2 =
1

2

𝑚𝑟1

𝑎
∫ (𝑦̇1(𝑧))2𝑎

0
𝑑𝑧,                

1

2
𝑚𝑟𝑒𝑑2𝑦̇𝐵

2 =
1

2

𝑚𝑟2

𝑏2
∫ (𝑦̇2(𝑧))2𝑎+𝑏2

𝑎
𝑑𝑧 (14) 

where 𝑦̇𝐵 is the velocity of B, 𝑦̇1(𝑧) and 𝑦̇2(𝑧) is velocity distribution along the 

beam 1 and 2, respectively. 

a) b) 

Figure 3 

Scheme of the cantilever supported: a) rigid; b) elastic 

Using the assumption that there is a direct correlation between the velocity 𝑦̇ and 

displacement y i.e. 
𝑦̇(𝑧)

𝑦̇𝐵
=

𝑦(𝑧)

𝑦𝐵
  where 𝑦̇𝐵 is the velocity and 𝑦𝐵 is the displacement 

of B, equations (14) transform into 

1

2
𝑚𝑟𝑒𝑑1𝑦̇𝐵

2 =
1

2

𝑚𝑟1

𝑎

𝑦̇𝐵
2

𝑦𝐵
2 ∫ (𝑦1(𝑧))2𝑎

0
𝑑𝑧,                

1

2
𝑚𝑟𝑒𝑑2𝑦̇𝐵

2 =

1

2

𝑚𝑟2

𝑏2

𝑦̇𝐵
2

𝑦𝐵
2 ∫ (𝑦̇2(𝑧))2𝑎+𝑏2

𝑎
𝑑𝑧 (15) 

where the deflection of B is 𝑦𝐵 =
𝐹𝑎3

3𝐼1𝐸
 and the elastic lines of AB and BC [14] 
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𝑦1(𝑧) =
𝐹

6𝐼1𝐸
(3𝑎𝑧2 − 𝑧3),   𝑦2(𝑧) =

𝐹𝑎2

6𝐼1𝐸
(3𝑧 − 𝑎). (16) 

After integration of (15) with (16) and some modifications, the reduced masses 

mred1and mred2 are obtained as 

𝑚𝑟𝑒𝑑1 =
33

140
𝑚𝑟1,        𝑚𝑟𝑒𝑑2 = 𝑚𝑟2

3(𝑎+𝑏2)2+𝑎2

4𝑎2  (17) 

Usually, it is assumed that the cantilever is connected with the rigid support. 

However, in multicantilever-mass mechanism, the units are elastically supported. 

In the next section, a method is developed for including the effect of elastic support 

in the rigidity coefficient of the system. The method represents a mixed analytic-

experimental one, where the measured vibration values are incorporated into the 

model of the system. 

3.1. Correction of Stiffness Matrix using the ‘Elastic 

Supporting Method’ 

The procedure for including correction in the coefficient of rigidity of the system 

due to elastic support is named ‘elastic supporting method’. On the system with 

reduced mass mred and a beam, with length l and rigidity s1, clamped in elastic 

support with rigidity sBef, the excitation force F acts (Fig. 3b). It causes the 

displacement of B, which is the sum of the bending of the beam y1 and displacement 

yBef due to inclination for angle φ. For the inverse rigidity of the beam 𝑐1 =
𝐹𝑙2

3𝐼𝐸
 , 

the bending displacement is 

𝑦1 = 𝐹𝑐1 (18) 

It is assumed that the displacement of B due to the bending torque Fl is the linear 

function of the inclination angle 𝜑. For 𝜑 = (𝐹𝑙)𝑐𝐵𝑒𝑓 and  𝑦𝐵𝑒𝑓 = 𝑙𝜑, the 

displacement is 

𝑦𝐵𝑒𝑓 =  𝐹𝑐𝐵𝑒𝑓𝑙2 (19) 

where 𝑐𝐵𝑒𝑓 is the inverse rigidity coefficient of support and l is the length of the 

beam. Finally, due to elasticity of the beam and of the elastic connection, the total 

displacement in B is 

𝑦 = 𝑦𝐵𝑒𝑓 + 𝑦1 = 𝑙𝜑 +
𝐹𝑙3

3𝐼𝐸
= 𝐹(𝑐𝐵𝑒𝑓𝑙2 + 𝑐1) (20) 

According to (20) the reduced inverse rigidity coefficient follows as 

𝑐𝑟𝑒𝑑 =
𝑦

𝐹
= 𝑐𝐵𝑒𝑓𝑙2 + 𝑐1 (21) 

For the reduced inverse rigidity (21) and reduced mass (17), the frequency of 

vibration is obtained in the form 
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𝑓𝑚 =
1

2𝜋
√

1

𝑐𝑟𝑒𝑑𝑚𝑟𝑒𝑑
=

1

2𝜋
√

1

(𝑐𝐵𝑒𝑓𝑙2+𝑙3 3𝐼𝐸⁄ )𝑚𝑟𝑒𝑑
 (22) 

where 𝑚𝑟𝑒𝑑 = 𝑚1 + 𝑚𝑟𝑒𝑑1 + 𝑚𝑟𝑒𝑑2 

Relation (22) is suitable for determination of the unknown rigidity coefficient cBef. 

Measuring the frequency of vibration of the model and substituting the obtained 

value into (22), the rigidity coefficient of the support cBef is calculated. The method 

for obtaining of the unknown rigidity suggested in the paper is a mixed procedure 

which interacts the data of the measurement and the analytically computed value. 

To prove the accuracy of the suggested method, the comparison of calculated 

rigidity coefficient of a 1-DoF flexible cantilever-mass beam with experimentally 

obtained one is done (see Fig. 4). Position of the mass in the mechanism is varied 

and the frequency of the system is changed. In spite of that, it is obtained that both 

the calculated and the measured inverse rigidity coefficient of support cBef remain 

almost constant. Difference between measured and computed values is negligible. 

 

Figure 4 

Inverse rigidity coefficient of support (cBef) of 1-DoF flexible clamped cantilever beam for different 

positions of mass m1 (a) obtained by measuring (dots) and by computed trend curve (full line) 

Using the suggested procedure, the elements of the symmetric matrix C, where the 

inverse rigidity coefficient of support is included, are calculated as 

𝑐11 = 𝑐𝑏𝑎2 +
𝑎3

3 𝐼1𝐸
 (23) 

𝑐1𝑖 = 𝑐𝑖1 = 𝑐𝑏(𝑎2 + 𝑎𝑏𝑖) +
𝑎2(2𝑎+3𝑏𝑖)

6 𝐼1𝐸
,   (𝑖 = 2 … 5) (24) 

𝑐𝑖𝑖 = 𝑐𝑏(𝑎 + 𝑏𝑖)2 +
𝑎(𝑎2+3𝑎𝑏𝑖+3𝑏𝑖

2)

3 𝐼1𝐸
+

𝑏𝑖
3

3 𝐼𝑖𝐸
,   (𝑖 = 2 … 5) (25) 

𝑐𝑖𝑗 = 𝑐𝑗𝑖 = 𝑐𝑏[𝑎2 + 𝑎(𝑏𝑖 + 𝑏𝑗) + 𝑏𝑖𝑏𝑗] +
𝑎[2𝑎2+3𝑎(𝑏𝑖+𝑏𝑗)+6𝑏𝑖𝑏𝑗]

6 𝐼1𝐸
,   (𝑖, 𝑗 =

2 … 5, 𝑖 ≠ 𝑗)cij = cji = cb[a2 + a(bi + bj) + bibj] +
a[2a2+3a(bi+bj)+6bibj]

6 I1E
,   (i, j = 2 … 5, i ≠ j) (26) 
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It is important to emphasize that the effect of the inverse rigidity coefficient of 

support on the frequency of the system is up to 20%. 

During experimental investigation it is seen that the value of the inverse rigidity 

coefficient of support is influenced by several factors (including the structure of the 

vise, the supporting force and the material of the support soil). 

4 Comparison of Vibration Properties of the 

Translational and the Cantilever-Mass Models 

In our investigation, the 5-DoF cantilever-mass mechanism which contains 4 

absorbers settled on the basic mass m1 is considered (Fig. 2b). Motion of the beams 

is assumed to be only in one plane and of the end points in vertical direction. Using 

the AutoCAD Inventor Software the 3D solid body system is created (Fig. 2a). 

Parameters of the mechanism are: a=0.12 m, b2=0.11 m, b3=0.13 m, b4=0.15 m, 

b5=0.17 m, m1=4.000 kg, m2=m3=m4=m5=0.500 kg, ρ=7850 kg/m3; E=210 GPa, 

I1E=12.285 Nm2, I2E=2.835 Nm2, I3E=3.78 Nm2, I4E=4.725 Nm2, I5E=5.67 Nm2. 

As masses of the springs are less than 10% of the attached masses, they are omitted 

in calculation. In addition, the elastic supporting and damping of the system are also 

neglected (in translational model ki=0,0001 Ns/m, avoiding divide by zero). Based 

on the 3D solid body model and using the relations (23)-(26), the stiffness 

coefficients (𝑠𝑖 , 𝑖 = 1 … 5) of the cantilever beams are computed for the 

translational modell 

𝑠1 = 1/𝑐11 (27) 

𝑠𝑖 =
3𝐼𝑖𝐸

𝑏𝑖
3 

,   (𝑖 = 2 … 5) (28) 

Using the Cramer’s rule for inverse stiffness matrix and the relations (27) and (28), 

the amplitude of vibration A1m of the cantilever beam with mass m1 excited with 

frequency ωg is obtained 

𝐴1𝑚 =

|

|

𝐹0 0 0 0 0

0 𝐶22
−1−𝑚2𝜔𝑔

2 𝐶23
−1 𝐶24

−1 𝐶25
−1

0 𝐶32
−1 𝐶33

−1−𝑚3𝜔𝑔
2 𝐶34

−1 𝐶35
−1

0 𝐶42
−1 𝐶43

−1 𝐶44
−1−𝑚4𝜔𝑔

2 𝐶45
−1

0 𝐶52
−1 𝐶53

−1 𝐶54
−1 𝐶55

−1−𝑚5𝜔𝑔
2

|

|

|

|

𝐶11
−1−𝑚1𝜔𝑔

2 𝐶12
−1 𝐶13

−1 𝐶14
−1 𝐶15

−1

𝐶21
−1 𝐶22

−1−𝑚2𝜔𝑔
2 𝐶23

−1 𝐶24
−1 𝐶25

−1

𝐶31
−1 𝐶32

−1 𝐶33
−1−𝑚3𝜔𝑔

2 𝐶34
−1 𝐶35

−1

𝐶41
−1 𝐶42

−1 𝐶43
−1 𝐶44

−1−𝑚4𝜔𝑔
2 𝐶45

−1

𝐶51
−1 𝐶52

−1 𝐶53
−1 𝐶54

−1 𝐶55
−1−𝑚5𝜔𝑔

2

|

|

 (29) 

In Fig. 5 the amplitude diagram as the function of the excitation frequency is plotted. 
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Figure 5 

Amplitude – excitation frequency diagram for the 5-DoF cantilever-mass mechanism 

According to the already published paper [18], the vibration amplitude A1t of the 

mass m1 in the 5-DoF ‘wallpaper’ model with translator motion (Fig. 1b) is 

𝐴1𝑡 =
𝐹0

√( 𝑠1−𝑚1𝜔𝑔
2 −∑ 𝑚𝑖

5
𝑖=2 𝐺𝑖1𝜔𝑔

2 𝑐𝑜𝑠𝜑𝑖)2+(𝑘1𝜔𝑔+∑ 𝑚𝑖
5
𝑖=2 𝐺𝑖1𝜔𝑔

2 𝑠𝑖𝑛𝜑𝑖)2
 (30) 

where     𝐺𝑖1 = √
(2𝐷𝑖𝜔𝑔𝜔𝑖

−1)
2

+1

(1−𝜔𝑔
2 𝜔𝑖

−2)
2

+(2𝐷𝑖𝜔𝑔𝜔𝑖
−1)

2 , 𝜑𝑖 =

𝑎𝑟𝑐 𝑡𝑔
𝜔𝑔𝜔𝑖

−1

(2𝐷𝑖)−1(𝜔𝑔𝜔𝑖
−1)

−2
 − (2𝐷𝑖)−1 +2𝐷𝑖

 , 

𝐷𝑖 =
𝑘𝑖

2𝑚𝑖𝜔𝑖
,     𝜔𝑖 = √

𝑠𝑖

𝑚𝑖
 (31) 

 

Figure 6 

Amplitude - excitation frequency diagram for the 5-DoF translational model (solid line) and for 1-DoF 

translational model without absorber (dashed line) 

In Fig. 6 the amplitude diagram as the function of the excitation frequency for the 

translator model (Fig. 1b) is plotted. 
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Comparing Fig. 5 and Fig. 6, it is visible that for both models (cantilever-mass and 

translational model, respectively) there are five resonances and four stopping 

positions (A1=0) which are not at the same excitation frequencies. The three center 

resonances are almost at the same frequencies and the shape of the curves are 

similar. Positions of the first and the last resonances are different. The stopping 

frequencies of the cantilever model are smaller than of the other one. 

In Fig. 7, the first six modal forms are presented for frequencies ω1, ω 2, ... ω 6 of 

the 5-DoF cantilever-mass mechanism modelled as 3D solid body model (Fig. 2a). 

The FEA Mesh settings are: average element size is 0.100, minimum element size 

is 0.200, grading factor is 1.500, minimum turn angle is 60.00 deg, and curved mesh 

and elements are allowed. Local mesh control has to be in the interval 1.00 mm to 

the upper and lower side of the cantilever beam. 

The results of the FEA can be seen as follows: 

ω1 – All the five masses vibrate in the same phase. This is the lowest resonance 

angular frequency of the main mass m1. 

ω2 – Mass m1 stops, the mass m5 attached with the longest stick resonates. This is 

the lowest angular frequency of vibration suppression. 

ω3 – Mass m1 stops, the mass m4 attached with the second longest stick resonates. 

This is the second lowest angular frequency of vibration suppression. 

ω4 – Mass m1 stops, attached mass m3 and mass m2 resonate together. This is the 

third lowest angular frequency of vibration suppression. It is interesting that there 

are no two different resonance frequencies in the FEA where mass m3 and mass m2 

resonate separately as it is expected. 

ω5 – System makes torsion movements. This is irrelevant for the present 

investigation. 

ω6 – The main mass and the attached masses vibrate in the opposite phase. This is 

the highest resonance angular frequency from the two models’ point of view. 

a) b) 
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c) d) 

e) f) 

Figure 7 

First six modal forms of FEA obtained by AutoDESK Inventor for frequencies: a) ω1, b) ω2, c) ω3, d) 

ω4, e) ω5, f) ω6 

The angular frequencies ω2, ω3, ω4 of Inventor FEA fit well with the first three 

stopping (A1=0) angular frequencies of the translational model, while the first and 

sixth ones support the values for the cantilever-mass model (Table 1). 

Table 1 

Frequencies of vibration for translational and cantilever 

 Translational 

model 

ω [rad/s] 

Cantilever 

model 

ω [rad/s] 

Inventor Finite Element Analysis  

for cantilever model 

            ω [rad/s] 

A1= 0 m 

83,21 67,26 ω2 

→  
83,38 m5 moves 

91,65 87,73 ω3 

→ 
92,05 m4 moves 

101,60 98,24 ω4 

→ 
102,16 m2 and m3 moves 

in opponent phase 

113,05 110,28 no matches 

 ω5 

→ 
135,40 Torsion 

A1 in 

resonance 

55,06 30,42 ω1 

→ 
29,34 m1 and the attached 

masses vibrates in 

phase 

85,76 86,53  

no matches 95,39 96,68 

106,88 108,58 

132,87 168,94 ω6 

→ 
159,72 m1 and the attached 

masses vibrates in 
opposite phase 
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According to the calculations, it is seen that in both models, the four attached masses 

stop the main mass at four different frequencies. However, some inconvenient 

resonances exist. Their decrease is obtained by using the dampers. 

In Fig. 8, the amplitude-frequency diagram for various values of the damping in the 

translational model is considered. It shows the calculations of the translational 

model with relatively small damping values set for all (ki=0-5 Ns/m), while the 

lowest critical damping value is much higher (k5crit=2 mω5=83,21 Ns/m). 

 

Figure 8 

Amplitude-frequency-damping curve for m1 at translational model 

In Fig. 8, it is found that in the translational model (even for small damping) the 

amplitudes of vibration have the tendency of decrease in the excitation frequency 

range of 65 – 120 rad/s. Based on this result, it is expected that the same property 

is evident in cantilever-mass model. 

Conclusions 

In the paper, the multicantilever-mass mechanism for vibration suppression is 

considered. The physical model contains the system of clamped beams with 

attached masses which act as vibration absorbers. The mathematical model of the 

system is available for calculation of the amplitude of vibration for different 

excitation frequencies. Based on 1-DoF measurements, an elastic supporting theory 

was introduced for the calculating of the torque spring stiffness of clamping of the 

beam end. It is shown that the measured and calculated stiffness are in good 

agreement. In addition, it is concluded in the paper that a comparison between the 

cantilever mechanism suggested in the paper and the already existing translational 

model is possible. For certain frequency values, i.e. for the second, third and fourth 

frequencies, vibration is suppressed in both models. In addition, the amplitude-

frequency plots for both models are similar in shape. Both models are in good 

agreement with numerical results matched with the Inventor FEA, too. However, it 

is obvious that the difference in results for the cantilever-mass system and 

translation mechanism is negligible. 
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Due to its simplicity (in comparison to the metastructure with translational motion 

of masses), the chosen cantilever system would be appropriate for measurements 

and future experimental investigation. The obtained experimental results for 

cantilever-mass mechanism should be treated for metastructure analysis. 

As a final result of the investigation, the influence of damping in the 5-DoF 

metastructure was measured and calculated. It was highlighted that as the damping 

increases, the amplitudes of vibration for three medium resonance frequencies 

decrease dramatically. 

For further investigation, the physical and mathematical model of the ‘wallpaper’ 

type metastructure’s basic cell (with one coupled mass) can be developed. 
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