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Abstract: The goal of this paper is to develop the neo-classical Solow growth model, in 

which, the authors repeal an assumption of a constant rate of growth of technological 

progress. Herein, the authors assume an alternative trajectory of an increase in scientific 

and technical knowledge A(t), and on that basis, they accept the following assumptions. 

First, the rate of growth of technological progress is not constant, but changes over time. 

Second, the path of the growth of the scientific and technological knowledge tends toward a 

certain level in the long term, which can be equated with the equivalent of the 

technological boundary. Such a modification of the assumptions regarding the 

technological progress rates, allows leading growth paths for both capital and product per 

unit of effective labor. Next, based on the solution of the presented growth model, the 

authors calibrated the parameters and carried out numerical simulations. Numerical 

simulations, conducted for the Polish economy in a 100-year horizon, allowed an inclusion 

of scenarios regarding both the rate of technological progress and investment rates. In the 

simulations, two variants of the annualized rates of technological progress were adopted 

(optimistic, g=1.7% and realistic, g=1.5%). The adopted levels of technological progress 

rates were used to determine the horizontal asymptote for the scientific and technological 

knowledge A(t) that will be shaped in accordance with geometric progress. In the 

considered variants the following investment rates were adopted: 15, 20 and 25%. This 

allowed determining the trajectories of labor productivity growth in the Polish economy 

taking into account different combinations of changes in the rates of technological progress 

and investment rates. 
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1 Introduction 

In the theory of economics technological progress is considered as one of the most 

important factors determining economic growth. In growth models technological 

progress is perceived differently and there is a large variety of factors that 

generate progress, which undoubtedly affects its exogenous or endogenous 

character. Apart from the factors determining technological progress, in this 

article the authors attempt to develop the neo-classical growth Solow model. They 

repeal the assumption of a constant growth rate of technological progress. In the 

paper the authors assume an alternative trajectory of an increase in scientific and 

technological knowledge, and on its basis of they assume the following 

assumptions. Firstly, the growth rate of technological progress is not constant but 

changes over time. Secondly, the growth path of scientific and technological 

knowledge tends to a certain level in the long term, which can be equated with the 

equivalent of the technological boundary. 

The structure of this paper is as follows. The first section is an introduction. The 

second part, a review of the literature regarding the inclusion of technological 

progress in selected models of economic growth and selected generalizations of 

the neo-classical Solow model were presented. The third part contains an 

analytical solution of the model that takes into account alternative assumptions 

regarding the development path of the scientific and technological knowledge. In 

the fourth part, the parameters of the presented model are calibrated and numerical 

simulations of labor productivity growth paths in the considered variants are 

presented. Part five is a summary of the considerations and the more important 

conclusions. 

2 Review of the Literature 

Economic growth is a multidimensional and long-term process leading to an 

increase of the production potential of a given economy. The multidimensional 

character of economic growth is primarily the result of many factors determining 

this process, and the basic ones include: capital, labor, technological progress, 

institutional factors or social capital [25, 27, 30]. Multidimensionality also results 

from an analysis of various aspects of particular factors that determine the 

processes of economic growth [26]. Capital in growth models is considered as 

material, human or social capital. Technological progress as an exogenous or 

endogenous factor, embodied or unmasked in a man, etc. A great contribution to 
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the development of the theory of growth is attributed to the Solow [23] model 

which became the foundation for later growth models. The Solow model was 

based on the power production function of the Cobb-Douglas type and the 

equation of capital accumulation which determines its growth as investments in 

this capital reduced by its depreciated value. This model also assumed a constant 

income from the scale of the production process, a constant rate of technological 

progress, or a constant rate of increase in the number of employees [23]. The basic 

advantages of the Solow model include the form of the equation that describes the 

accumulation of tangible capital, an uncomplicated analytical form of the model 

solution, which, with the power production function, is easily empirically 

verifiable by determining the growth paths of technological labor or labor 

productivity. The main weaknesses of the model include, first of all, an adoption 

of physical capital as the only factor of production, thus omitting, for example, 

human capital, adopting permanent economies of scale and treating technological 

progress or the number of employees as exogenous variables (for more on the 

disadvantages and critiques of the Solow model [18] [19]. Criticism of the 

exogenous nature of technological progress in the Solow model made that many 

researchers attempted to endogenize a technological progress in growth models. 

One of the first researchers who presented the concept of endogenization of 

technological progress was Conlisk. In his research he accepted the assumption 

that economy and its growth are a closed system of dependencies between 

investment rates in human and material capital and technological progress [6]. 

Conlisk’s assumptions were developed as part of a new growth theory in which 

the so-called Solow residual was understood as the result of expenditure in human 

capital, the product of which are new production techniques determining 

economic growth. Technological progress as a product of human capital was 

endogenized. As part of the new growth theory two main trends of research can be 

distinguished. In the first approach an increase in technological progress is the 

effect of the accumulation of knowledge. In the endogenization models of 

knowledge accumulation, the research sector (R&D sector) is introduced. Its 

purpose is to generate new knowledge, and thanks to it, a larger product can be 

obtained with a given capital and labor resource. Such an approach to the 

endogenization of technological progress occurred in works including: [3] [20] 

[11] [1] [28] and empirical studies in the works of, among others [16] [29] [14]. 

The second trend assumes that the accumulation of capital is of fundamental 

importance for growth, while capital is recognized more broadly, including human 

capital as the causative factor of technical progress. The models created under the 

second trend include, among others works: Romer [21], Barro [2], Mankiw, 

Romer, Weil [17] or Kramer, Thompson [15]. 

Theories of endogenous growth, although they justified the issue of generating 

technological progress, proved to be incapable of explaining the key empirical 

regularities in the processes of growth and development in various regions of the 

world during the last two millennia. In general, exogenous and endogenous 

theories are classified as non-uniform theories of economic growth. Currently, one 
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of the most interesting and advanced theories is Unified Growth Theory – Oded 

Galor [9]. With regard to this theory, it can be said, that it belongs to neoclassical 

theories of endogenous growth. One of its main assumptions is an interaction 

between investments in human capital and technological progress which evoke the 

following spiral. Human capital generated faster technological progress, which in 

turn increased the demand for human capital, leading to increasing investments in 

children quality, which ultimately led to a decrease in demographic growth and, as 

a result, to a decline in the population. An increase in demand for human capital 

caused by technological progress eventually resulted in an increase in the quality 

of children's education at the expense of the number of children they have. 

Therefore, human capital also plays an important role here. It creates a faster 

technological progress but also determines the demand for human capital, which 

results in the growth of human capital while leading in highly developed 

economies to a decrease in the birth rate and population, and this becomes a new 

stimulus for a further technological progress. The technology growth rate in the 

Galor [9] model is defined as a function of the quality of education and a 

sufficiently large active population. However, it is not constant as in the Solow 

model but is subject to change. In addition, the technological boundary is possible, 

and in the Solow model technological progress tends to infinity. 

Most growth models were based on certain weaknesses of the Solow model, such 

as the assumption of the exogenous nature of technological progress or the 

adoption of physical capital as the only factor of production, excluding human 

capital. Some researchers focused their attention on developing the Solow model 

by repealing rather unrealistic assumptions. An example of this may be the work 

where the assumption that there is a constant rate of employment growth 

(constituting a constant percentage of the exponentially growing population) 

exists. It means that the number of people working in the economy in the long run 

increases to infinity, which was dictated by the existence of a positive rate of 

demographic growth. Nowadays, demographic processes taking place in many 

developed economies undermine the accuracy of the above assumptions. The 

studies where alternative assumptions about the paths of employment growth are 

considered include the works: Guerrini [10] [12], Biancia, Guerrini [4], 

Sinnathurai [22], Sika, Vidová [24] or Dykas, Misiak, Mentel [7]. 

In this paper the authors attempt to develop the neo-classical Solow economic 

growth model and they repeal the assumption of a constant growth rate of 

technological progress. In the study the authors assume an alternative trajectory of 

an increase in scientific and technological knowledge, and on its basis they 

introduce the following assumptions. Firstly, the growth rate of a technological 

progress is not constant but changes over time. Secondly, the growth path of the 

scientific and technological knowledge tends to a certain level in the long term, 

which can be equated with the equivalent of the technological boundary. 
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3 Model 

The model of economic growth discussed in this paper is based on the following 

assumptions: 

1) The production process is shaped according to the Cobb-Douglas [5] power 

production function according to the formula (see also: Tokarski [27; 28])
1
: 

         


1
tEtKtY  (1) 

where Y is the stream of produced product, K and E are (respectively) capital 

expenditure and so-called the units of effective work, αϵ(0;1) is the product's 

flexibility in terms of capital expenditure, and 1-αϵ(0;1) is the flexibility of the 

product created in the economy relatively to the units of effective work. 

2) The accumulation of capital, as it is in the original Solow [23] model, is 

described by the following differential equation: 

     tKtsYtK   (2) 

where δϵ(0;1), sϵ(0;1) mean (respectively) the investment rate and the rate of 

capital depreciation. 

3) The amount of scientific and technological knowledge at the t moment is 

shaped according to the following growth path: 

  teAtA   0  
(3) 

where: A0-ϴ>0  

The growth path of the scientific and technological knowledge described by 

equation (3) is characterized by the fact that in the infinite time horizon (t→∞) 

this resource tends to the level of A0. However, in the period t=0, the scientific 

and technological knowledge in the discussed model of economic growth is at 

the level A0-ϴ>0. Moreover, by differentiating the relation (3) with respect to 

time, we obtain: 𝐴̇(𝑡) = 𝜃𝜆𝑒−𝜆𝑡 > 0. The above dependences show that the 

growth path described by (3) grows asymptotically from level A0-ϴ to the value 

A. 

4) Effective work units E(t) are defined as a set of scientific and technological 

knowledge A(t) weighted by the number of employed L(t). When determining 

the growth rate of units of effective work 𝐸̇(𝑡)/𝐸(𝑡), it turns out that they grow 

at a growth rate equal to n+g(t), where n> 0 is the rate of growth in the number 

                                                           
1 All subsequent macroeconomic variables are assumed to be differentiable functions of 

time t≥0. The record x(t) will mean the value of the variable x at the moment t, and 

x(t)=dx/dt - the derivative of the variable x after the time t, i.e. (economically speaking) 

an increase in the value of this variable at the moment t. 
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of the employed in this economy, and 𝑔(𝑡) = 𝐴̇(𝑡)/𝐴(𝑡) is the growth rate of 

the scientific and technological knowledge referred to in the literature as 

technological progress rate. Hence and from dependence (3), it follows that the 

rate of technological progress in the discussed economic growth model is the 

following: 

 
t

t

eA

e
tg















0

 (4) 

From the above considerations, it follows that the growth rate of the effective 

work units is in line with: 

 
 

n
eA

e

tE

tE
t

t

















0


 (5) 

5) Assuming that y=Y/L and k=K/L are (respectively) labor productivity and 

technical development, then the following relationships will be satisfied: 

   tyeLtY nt

0  (6) 

   tkeLtK nt

0  (7) 

6) Moreover, assuming that yE=Y/E and kE=K/E  yE=Y are (respectively) the 

stream of product produced and the capital stock per unit of effective work and 

based on equation (6) - (7) we get: 

     tyeAty E

t   (8) 

     tkeAtk E

t   (9) 

From the production function (1) one can go to the production function in an 

intense form by dividing its sides by units of effective work E>0, which based on 

assumption 6) gives: 

    tkty EE   (10) 

The relation (10) describes the relationship between the capital expenditure per 

unit of effective work (kE) and the production volume per unit of work (yE). 

Differentiating capital for the unit of effective work(kE=K/E) after the t time we 

obtain: 

 
       

  

 
 

 
 

 tk
tE

tE

tE

tK

tE

tEtKtEtK
tk EE


 




2
  

which together with (2)-(5) gives us: 

       tkttsytk EEE   (11) 
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and     0 ntgt   means the rate of capital loss per unit of effective 

work. The differential equation (11) is equivalent to the Solow movement 

equation [22] in the economic growth model discussed here. 

Taking into account the production function in the intense form (10) and the 

relation (11), one can obtain the following differential equation: 

        tkttkstk EEE 

  (12) 

The equation (12) for each t≥0 has a trivial solution (kE(t)=0) and a family of non-

trivial integrals
2
. 

The equation (12) for kE>0 can be presented as: 

          





1
tktstktk EEE

  (13) 

By making the Bernoullei substitution: 

 

     


1
tktz E

 
(14) 

we get the following transformation of the equation (13): 

 
   tzts

tz





1


  

which can be transformed into the relation: 

         tztstz   11  (15) 

Considering the homogeneous equation from the relation (15) we get: 

 

       tzttz  1  
(16) 

the solution of equation (16) is given by the formula: 

          11 
 tAetCtz tn

 (17) 

where the factor C(t) is the integral integration constant. Differentiating the 

equation (17) with respect to time and taking into account the relation (14) we get: 

                                                           
2 The trivial integral (as uninteresting from both mathematical and economic point of view) 

will be further ignored. Non-trivial integral of this equation will determine the time path 

(or path of growth) of capital for the unit of effective work. 
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Thus, and from the relations (3) - (5) we get: 

          


 dttAtnstC



1

0 exp1exp1   

Selecting t so that the condition is met
3
: 

    expWt   

we get C(t) approximated to the form: 

       
 dttntstC  11exp1   

In addition (for ω=2-α) by differentiating Γ(ω,(1-ω)(n+δ)t) we get
4
: 

 

           



  nte

dt

tnd tn 1
1, 11  

 

From here we finally get: 

            CtnnstC 





1,11
2

  

where C>0. 

Hence, and from the relations (14) and (17), capital for the unit of effective work 

can be written as: 

                    1

1
211 1,11 

    CtnnstAetk tn

E
 (18) 

Assuming that for the discussed problem the Cauchy boundary condition of takes 

the form kE(0)= kE0≥0, the constant C>0 can be written as: 

         

  















1

11

0

11

0 0,11 nsAk
C E   

                                                           
3
 The function W(z) denotes the special function of W-Lambert, i.e. the function which for 

the complex number z meets the relation: z=W(z)exp(W(z)). 
4 The function Γ(z) is a special gamma function, i.e. a function defined for any complex 

number as: 𝛤(𝑧) =
1

𝑧
∏

(1+
1

𝑛
)
𝑧

1+
𝑧

𝑛

∞
𝑛=1 . 
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Thus, the integral of equation (13) is written as: 

𝑘𝐸(𝑡) = [𝑠𝐴0
1−𝛼(𝛽 − 1)((1 − 𝛽)(𝛿 + 𝑛))

1−𝛽
𝛤(𝛽, (1 − 𝛽)(𝑛

+ 𝛿)𝑡) + 

+
𝑘𝐸0
𝛽−1

− (𝜏 − 𝜃)1−𝛽𝑠𝐴0
1−𝛼(𝛽 − 1)((1 − 𝛽)(𝛿 + 𝑛))

1−𝛽
𝛤(𝛽, 0)

(𝜏 − 𝜃)1−𝛽
 

(𝑒𝑡(1−𝛽𝛿)(𝜏 − 𝜃𝑒−𝜆𝑡)
1−𝛽

)]

1
1−𝛼

 

(19) 

In addition, the product for the unit of effective work (yE(t)) is described by the 

equation: 

           
         

 

     


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
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
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











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



1
11

1

11

0

11

0

11

0

0,11

1,11

tt

E

E

ee

nsAk

tnnsAty

 
(20) 

4 Calibration of Model Parameters and Numerical 

Simulations 

Numerical simulations of the theoretical model presented in point 3 were 

conducted in two stages in one-hundred-year periods. In the first stage, the values 

of parameters of equations describing the shaping of the scientific and 

technological knowledge and the path of labor productivity growth were 

calibrated. In the second stage, numerical simulations of the above-mentioned 

paths were performed based on different scenarios regarding the investment rates 

and the technological progress rate. For the function describing the growth path of 

the scientific and technological knowledge base, the following conjunction was 

adopted: 

A0-

ϴ=A2000       

˄       

A0=A2100 

(21) 

where: A2000 and A2100 are (respectively) resources of scientific and technological 

knowledge in 2000 and 2100. In the study, the level of scientific and technological 

knowledge A(t) in 2000 was normalized to unity, and the level for 2100 was 

determined based on the average annual technological progress rate assuming that 

A(t) will be shaped in accordance with geometric progress. To this end, the 
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production function (1) was used, assuming a constant rate of increase in scientific 

and technological knowledge 
𝐴̇(𝑡)

𝐴(𝑡)
= 𝑔 > 0 , thus, we get: 

         


1~
tLtKeAtY gt  (22) 

Where 0
~
A  means the level of scientific and technological knowledge in the 

period t=1. 

By logarithmizing equation (22) we obtain: 

            tLtKgtAtY ln1ln
~

lnln    (23) 

When subtracting, in equation (23), the items ln(L(t)) one can go to dependencies: 

       tkgtAty ln
~

lnln   (24) 

The equation (24) describes the log-linear relationship between labor productivity 

y and the technological development k and the rate of technological progress. In 

the next stage, based on panel data for Polish provinces taken from the Central 

Statistical Office for the years 2000-2015, the parameters of the following 

equation were estimated: 

   itit kty lnln 210    (25) 

where yit is labor productivity in the i-th of the provinces (i=1,2, ..., 16) in year t 

(t= 2000, 2001, ..., 2015); kit is a technological development in the i-th province in 

year t; α0 this is the logarithm of the total productivity of factors of production; α1  

parameter determining technological progress; α2 flexibility of labor productivity 

in relation to technological development. 

Table 1 

Estimated parameters of the equation (25) 

Explanatory variable 
Values of estimated 

parameters 

Constant 
-32.0685 

(0.0000) 

ln(kit)  
0.2997 

(0.0000) 

T 
0.0174 

(0.0000) 

R2 

Corr. R2 

0.8171 

0.8151 

Source: personal study 

The level of significance was given in brackets. 
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The estimation of the parameters of the equation (25) was made on the basis of the 

instrumental variables method using the Generalized Method of Moments. The 

estimates presented in table 1 show that the average flexibility of labor 

productivity in relation to technological development in Polish provinces in the 

years 2000-2015 was about 0.30 and the value of such flexibility was accepted for 

further numerical simulations (see also [8]). In addition, the average annual 

technological progress rate for this period was approx. 1.7%. For this reason, in 

numerical simulations two variants were adopted regarding the formation of the 

A(t) value. The first variant (called optimistic) assumes such level of A(t) in 2100 

that would be determined by the average annual technological progress rate 

consistent with the estimates, while the second variant (realistic) assumes an 

average annual growth of 1.5%
5
. 

Figure 1 presents the growth paths of scientific and technological knowledge with 

the assumed variants. Assuming the first variant, where the level A(t) in 2100 will 

be implied by an average annual technological progress equal to 1.7%. Assuming 

such a scenario of shaping the scientific and technological knowledge, its value in 

2100 in relation to 2000 will increase by 4.8 times. 

 

 

Figure 1 

Trajectories of the scientific and technological knowledge in the adopted variants 

Source: own study 

                                                           
5 The Polish economy has undergone a system transformation from a centrally planned 

economy to a market economy. Almost 50 years of existence of a centrally planned 

economy in Poland generated significant technological delays (a technological gap) in 

relation to the economies of Western Europe. In the period 2000-2015, which was 

adopted to estimate the rate of technological progress, the Polish economy on the 

principle of technological convergence continued to reduce the technological gap. Thus, 

the estimated rate of technological progress may be overstated as it contains the effect of 

technological convergence. For this reason, in the realistic variants, the average annual 

rate of technological progress at the level of 1.5% was adopted. 
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While accepting variant II an increase in the amount of scientific and 

technological knowledge in 2100 will be fourfold in comparison with 2000. 

In addition, in each of the variants considered, three scenarios regarding the 

investment rates were adopted. In the years 2000-2015, the average investment 

rate for the Polish economy was at the level of 19.8%, and based on this average 

the authors assumed that this rate in the discussed time horizon would be equal to 

20% assuming that it may deviate by 5 points rates. Bearing in mind the above, 

the variants regarding the investment rate were: 15%, 20%, 25%. The growth rate 

of the number of employees was assumed at 1%. In addition, based on the capital 

accumulation equation (2), the rate of depreciation of capital for the Polish 

economy was estimated. The equation describing the rate of depreciation of 

capital in discrete time is as follows: 

t

tt

K

KsK 




  (26) 

Equation (26) assumes flexibility of labor productivity in relation to capital-labor 

ratio at the level of 30%, and the investment rate at 20%. Based on statistical data 

taken from the Central Statistical Office, regarding the development of physical 

capital in the Polish economy for the years 2000-2015, the rate of depreciation of 

capital at the level of 8.5% was estimated. 

Table 2 

Numerical simulations of labor productivity in various variants of the rate of technological progress 

and investment rates 

Simulation 

period 

(in years) 

Variant I (g=1.7%) Variant II (g=1.5%) 

s=0.15 s=0.2 s=0.25 s=0.15 s=0.2 s=0.25 

2000 1 1 1 1 1 1 

2020 3.611 4.037 4.410 3.014 3.366 3.674 

2040 6.333 7.152 7.861 5.0181 5.665 6.225 

2060 8.498 9.609 10.571 6.589 7.451 8.196 

2080 10.071 11.391 12.534 7.725 8.738 9.614 

2100 11.172 12.638 13.906 8.518 9.636 10.603 

Source: Own study 

 

Table 2 presents numerical simulations for a 100-year time horizon for the Polish 

economy. The following conclusions of the economic character can be drawn 

from the results of numerical simulations regarding the labor productivity growth 

paths. 
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When assuming the first variant (see Fig. 2) regarding the rate of technological 

progress, and assuming that the economy will be characterized by a relatively low 

investment rate of 15%, labor productivity in the discussed time horizon will 

increase more than eleven times. In the same scenario concerning technological 

progress, but assuming that investment rates will be at 20%, labor productivity in 

the Polish economy will increase by about 12.5 times as compared to 2000. With 

the first option, the highest increase in labor productivity would occur at the rate 

investment equal to 25% and this increase would be almost fourteen. 

 

Figure 2 

Labor productivity growth paths in various scenarios regarding investment rates and technological 

progress rate g=1.7% 

Source: Own study 

 

Figure 3 

Labor productivity growth paths for various scenarios regarding investment rates and technological 

progress rate g=1.5% 

Source: Own study 
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When assuming that the level of the scientific and technological knowledge in the 

year 2100 will increase by 4.8 times - the second variant and also assuming that 

the investment rate in the discussed time horizon will be 15%, then the labor 

productivity will increase by about 8.5 times. However, with the same variant, 

assuming an investment rate of 20%, the product per employee in the economy up 

to 2050 will increase by about 9.6 times. On the other hand, Figure 3 shows that 

with the second variant regarding the rate of technological progress, with an 

investment rate of 25%, labor productivity in the years 2000-2050 will increase by 

around 10.6 times. 

 

 

Figure 4 

Compilation of labor productivity growth paths for different variants concerning the rate of 

technological progress and the investment rate s=20% 

Source: Own study 

When comparing two options regarding the development of the scientific and 

technological knowledge in the horizon 2000-2100, it can be noticed that, for 

example, in the case of investment rates of 20% (see Fig. 4), labor productivity in 

2100 will be approx. 30% higher than for the second variant. 

Conclusions 

The model of economic growth presented in the paper is a modification of the 

neo-classical Solow-Swan model (1956). In the model under consideration, the 

assumption of a constant rate of technological progress was abolished, thus 

assuming the path of growth of the scientific and technological knowledge 

resources changing exponentially to a permanent asymptote. This modification 

allowed taking into account, herein, certain scenarios concerning the shaping of 

the technological progress rate, thus obtaining various paths of growth of the 

scientific and technological knowledge. The study adopted two scenarios, 

regarding the technological progress rate, the first optimistic variant with a 

progress rate equal to 1.7% and (the second) realistic one for the rate equal to 
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1.5%. Numerical simulations show that the scientific and technological knowledge 

in the Polish economy, 2000-2100 will increase about 4.8 times in the 

implementation of the optimistic variant, while the realistic variant has a lower 

growth rate of 400% in the year 2100 compared to the year 2000. 

For each of the variants regarding the development of the technological progress 

rate, three scenarios for the investment rate were selected. The following levels: 

15%, 20%, and 25% were assumed. The numerical simulations carried out for the 

investment rate of 15% allow noticing that depending on the adopted scenario, an 

11-fold increase in labor productivity (for the optimistic variant) and an 8.5-fold 

increase for the realistic variant is possible. With an investment rate of 20%, an 

increase in labor productivity in the discussed time horizon was 12.6 times (in the 

optimistic variant) or 9.6 times (in the realistic variant). The highest increase in 

labor productivity was recorded at the investment rate of 25% and for the 

optimistic variant, it was 13.9 times, while for the realistic variant, it was 10.6 

times. 
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