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Abstract: This paper introduces a novel approach to human-machine collaborative 

learning that allows for the chronically missing human learnability in the context of 

supervised machine learning. The basic tenet of this approach is the refinement of a human 

designed software model through the iterative learning loop. Each iteration of the loop 

consists of two phases: (i) automatic data-driven parameter adjustment, performed by 

means of stochastic greedy local search, and (ii) human-driven model adjustment based on 

insights gained in the previous phase. The proposed approach is demonstrated through a 

real-life study of automatic electricity meter reading in the presence of noise. Thus, a 

cognitively-inspired non-connectionist approach to digit detection and recognition is 

introduced, which is subject to refinement through the iterative process of human-machine 

cooperation. The prototype system is evaluated with respect to the recognition accuracy 

(with the highest digit recognition accuracy of 94%), and also discussed with respect to the 

storage requirements, generalizability, utilized contextual information, and efficiency. 

Keywords: human-machine cooperative learning; digit recognition; stochastic search 

1 Introduction 

An important aspect of digital education relates to supporting the learner to 

acquire software development competencies. The main lines of research in this 

field include cost-effective simulation of programming environments [8, 20], 

dynamic adaptation of e-training [9, 36], human-machine interaction [31, 34] and 

collaborative learning [21, 22]. Recently, the research attention has been also 

devoted to developing specific digital teaching paradigms [5]. This paper makes a 

novel contribution to the field. It introduces an approach to human-machine 



M. Gnjatović et al. Putting the Human Back in the Loop: A Study in Human-Machine Cooperative Learning 

 – 192 – 

collaborative learning that allows for the chronically missing human learnability 

in the context of supervised machine learning. 

Deep learning has undoubtedly made a significant breakthrough in many scientific 

domains. One of the main reasons of the enormous popularity of neural networks 

is that they – at least in the manner usually practiced – do not require considerable 

domain expertise or human engineering [26]. The very term “learning” is 

somewhat misused in this context. Deep learning relates to the process of 

encoding statistical regularities from the training corpora into parameters, which 

operate by very different principles from those underlying human learning [38]. 

Modern deep neural networks may contain up to hundreds of millions of 

automatically adjusted parameters [26], and derive high-dimensional 

representations that are not interpretable by human. Therefore, although deep 

learning may result in very useful software artifacts, it does not contribute to 

human learnability of domain expertise. 

This paper
1
 considers the question of bringing the human back into the learning 

loop. It proposes an approach to making the process of software development 

more explanatory to the practitioner, while keeping some of the existing 

advantages specific to supervised learning. The proposed approach is 

demonstrated through a real-life study of automatic electricity meter reading in the 

presence of noise. 

1.1 Main Idea and Outline 

This paper makes contributions along two research lines. First, it introduces a two-

stage approach to digit detection and recognition (cf. Section 2). The approach is 

cognitively-inspired to the extent that it integrates the dichotomy between the pre-

attentive processing and the attentive processing that is present in the theories of 

human attention [7, 13, 24, 31, 32, 35]. It is also parameterized, and the number of 

free parameters is small enough that the model is analytically tractable by human. 

To this extent, this approach is non-connectionist. 

However, it cannot be assumed that this approach is per se generalizable to the 

target domain. This leads to the second research line – iterative refinement of the 

approach through human-machine cooperation. This research line derives from 

iterative and incremental software development practices that belong to the 

folklore of computer science [25]. However, it is particularly focused on 

supervised learning, and on what we refer to as “iterative learning loop”, 

represented diagrammatically in Fig. 1. Each iteration of the loop consists of two 

phases (cf. Section 3): 

                                                           
1
 This paper is a significantly extended version of [18]. 
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 Automatic data-driven parameter adjustment, performed by means of 

stochastic greedy local search over a training corpus. 

 Human-driven model adjustment based on insights gained in the previous 

phase. 

 

Figure 1 

Diagrammatic representation of human-in-the-loop supervised learning 

The main idea is to allow the practitioner to take advantage of automatic data-

driven supervised learning – not only with respect to parameter adjustment (which 

is the usual case), but also to gain additional qualitative insights into the target 

domain. Thus, the iterative refinement of the approach to digit detection and 

recognition is both machine-driven and human-driven. The number of iterations is 

not predefined, i.e., the model is refined until it satisfies external requirements (in 

this paper, we describe two iterations). 

After the iterative learning loop is completed, the model is validated on a test 

corpus. The paper ends with the discussion and conclusion (cf. Section 4). 

2 Two-Stage Approach to Digit Recognition 

The theories of human attention acknowledge that selective processing of sensory 

information has an important role in human cognition [2, 6]. However, they do not 

agree on the processing stage in which information are selected [32, 35]. The early 

selection view assumes that incoming sensory information are filtered in a 

processing stage prior to the stage of semantic interpretation, and that only the 

selected information is interpreted [7, 24]. The late selection view assumes that all 

sensory information is semantically interpreted, and that selection occurs in a later 

stage on the level of interpreted information [13]. A significant body of evidence 

supporting one or other of these views has been presented in this long-standing 
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debate, which may imply that the early and late selections of sensor information 

do not necessarily exclude each other [32]. 

In line with this, we assume the view that selection of sensory information occurs 

in two processing stages (cf. [31]): 

 Pre-attentive processing serves as the basis for perceptual grouping, 

 Attentive processing allows for semantic integration. 

In the considered real-life study of automatic electricity meter reading, the pre-

attentive processing stage is devoted to detecting relevant numbers, i.e., rows of 

digits that represent rates, while ignoring irrelevant digits (e.g., an electricity 

meter serial number) and symbols. Each number detected in the pre-attentive 

processing stage separately undergoes the attentive processing stage, devoted to 

recognition. 

Two-stage processing has already been applied in various approaches to the 

research problem of object detection and recognition. At the methodological level, 

these approaches usually apply data-driven statistically-based techniques, such as 

the Markov random field theory and maximum a posteriori principle [30], the 

AdaBoost algorithm [15, 29], the support vector machine [1], neural networks 

[28], etc. (a more extensive overview is given in [15]). Symbolic approaches are 

applied significantly less often [17]. 

However, at the practical level, the production of representative and balanced 

training corpora is a challenging task, especially in such cases when surface 

manifestations of noise in image vary significantly. In contrast to the dominant 

trend, the approach introduced in this section is feature-based, but still non-

connectionist in the sense that it does not require an extensive training corpus. 

To extract feature vectors that represent image segments, we refer to the 

normalized histogram of oriented gradients [10]. To estimate the similarity 

between the feature vectors, we apply the cosine similarity [12]. 

2.1 Feature Extraction 

Let f  be an image segment, and let ),( yxf  be the intensity of segment f at pixel 

),( yx . To compute the gradient of f at pixel ),( yx , we apply the horizontal and 

vertical Sobel filters: 
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This gradient vector can be equivalently represented by its magnitude ),( yxg  

and gradient direction ),( yx , i.e.: 

)),(,),((),( yxyxgyxg   (2) 

where the magnitude is approximated by: 

),(),(),(),(),( 22 yxgyxgyxgyxgyxg yxyx   (3) 

and the gradient direction is calculated as: 
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Gradient vector y)g(x,  is further decomposed along n  chain code directions, i.e., 

it is decomposed along a set of n  elementary vectors rotated in increments of 

n/2  (where n  is an input parameter), having its gradient direction ),( yx  

approximated to the closet chain code direction. More formally, gradient vector 

y)g(x,  is mapped onto a feature vector: 

)),(,),,(),,((),( 110 yxayxayxayx n   (5) 

in which all elements but one are equal to zero, and the value of the nonzero 

element is equal to the gradient vector magnitude ),( yxg : 
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for 10  ni . Thus, a pixel at ),( yx  is represented by an n -dimensional 

feature vector ),( yx . To represent entire segment f , it is partitioned into an 

NM   grid of rectangular cells: 

),(,),(),( 110 fBfBfB NM   (7) 

where M  and N  are input parameters. Each cell )( fBi  is represented by an n -

dimensional feature vector: 

)),(),(),(()( 1,1,0, fbfbfbf niiii    (8) 
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calculated as the sum of all feature vectors that represent the pixels belonging to 

the given cell, i.e.: 
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where 10  NMi  and 10  nj  

Feature vector )(ˆ f  that represents segment f  is generated in two steps. First, 

all cell feature vectors ),(,),(),( 110 fff NM    are concatenated: 

)),(,),(),(()( 110 fcfcfcf NMn    (10) 
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and then each element in vector )( f  is normalized with respect to the entire 

segment, i.e.: 

)),(ˆ,),(ˆ),(ˆ()(ˆ 110 fcfcfcf NMn    (12) 

where: 
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and 10  NMni . An image segment is represented by a feature vector 

whose size (i.e., NMn  elements) is constant and does not depend on the size 

of the segment. This enables the comparison of segments of different sizes. 

2.2 Feature Vector Similarity 

Let )(ˆ 1f  and )(ˆ 2f  be feature vectors that represent image segments 1f  and 

2f , respectively. As a measure of segment similarity, we apply the cosine 

similarity: 
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Since all elements in feature vectors are nonnegative, ),( 21 ffsim will always be in 

range  1,0  – the higher the score, the more similar the feature vectors. 

2.3 Pre-attentive and Attentive Processing 

The electricity meter reading is conducted in the following stages: (i) preparatory 

stage (i.e., image pre-processing), (ii) pre-attentive processing (i.e., number 

detection), and (iii) attentive processing (i.e., number recognition). The image pre-

processing includes: 

 Color to grayscale conversion, according to the ITU-R recommendation 

BT.709-6 (06/2015) [23], 

 Contrast stretching, i.e., image enhancement by means of increasing the 

dynamic range of its gray levels [19, pp. 85-86], 

 Adaptive global thresholding [33, pp. 120-121], i.e., binarization of the 

image by means of separation of light and dark regions. 

The other two stages are described in more detail in the following subsections. 

2.3.1 Pre-attentive Processing: Number Detection 

The introduced approach is feature-based. Each digit  9,,1,0 d  is described 

by a feature vector )(ˆ d  extracted from a binarized image of digit d , as 

described in Subsection 2.1. Let   be the set of all ten ground-truth feature 

vectors: 

 .)9(ˆ,),1(ˆ),0(ˆ  T  (15) 

In the pre-attentive processing stage, a sliding window is used to search through 

the image and perform early selection of relevant image segments. For each 

sliding window segment f , its feature vector )(ˆ f  is generated and compared to 

the ground-truth feature vectors in  . If the maximum similarity value of )(ˆ f  

with each one of the ground-truth feature vectors is greater than the predefined 

threshold value 1  (which is also an input parameter), i.e., 

,>)),(ˆ(max 1 tfsim
t 

 (16) 

segment f  is marked as potentially containing a digit, and added to set  . 

It should be noted that the mapping of relevant digits in the input image onto 

segments in set   is not intended to be bijective. The size and step of the window 

are input parameters. Depending on their values, segments stored in   may 

overlap (i.e., they may contain the same digit), or a digit in the input image can 
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remain undetected. To illustrate this, we deliberately selected non-optimal values 

of the size and step of the sliding window (i.e., the window size is smaller than 

optimal, and the step is greater than optimal). The result is shown in Fig. 2. For 

the purpose of presentation, the width and height of all images are scaled up by 

the factor of two, and the rectangles that designate segments are automatically 

generated by the prototype system. The grayscale input image is given in Fig. 

2(a). The segments in   are depicted in Fig. 2(b). Some segments are incorrectly 

marked as containing a digit, while some digits were not detected at all. However, 

a segment that contains the entire number can be determined as the minimum 

rectangular segment that contains all segments in  , as depicted in Fig. 2(c). 

 

Figure 2 

Number detection in the pre-attentive processing stage: (a) the grayscale input image, (b) the segments 

detected as containing digits, (c) the segment containing the entire number (images adopted and 

adjusted from [18]) 

In addition, since an electricity meter may contain more than one row of relevant 

digits, after the window slides through the entire image, set   is partitioned so 

that each subset i  contains digits that belong to a separate number. For the 

purpose of this contribution, we assume that rows of digits are presented one 

below the other (which is often the case). We consider that segments ip  and jp  

from set   are related (i.e., they contain digits belonging to the same number) if 

they overlap along y-axis or if there is another segment kp  such that kp  is 

related both to ip  and jp . This relation between segments is an equivalence 

relation, and it is used to partition set  : 

),0)(,()(  jijiji

i

i  (17) 

where each subset i  relates to a separate number. This is illustrated in Fig. 

3(a,b). The grayscale input image given in Fig. 3(a) contains two relevant 

numbers, i.e., the electricity meter has two rates. The set of segments detected by 

the sliding window is partitioned into two subsets: 1  and 2  (cf. Fig. 3(b)). The 

image segment containing the first number is determined as the minimum 

rectangular segment that encapsulates all segments in 1 . Similarly, the minimum 

rectangle segment that encapsulates all segments in 2  relates to the second 

number. 
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In general, after the completion of the pre-attentive processing stage, a set of 

segments containing relevant numbers in the input image is extracted: 

 
knumnumnum fff ,,,

21
 . (18) 

Each of these segments separately undergoes the attentive processing stage. 

 

Figure 3 

(a) The grayscale input image, (b) number detection in the pre-attentive processing stage, (c) number 

recognition in the attentive processing stage (images adopted and adjusted from [18]) 

2.3.2 Attentive Processing: Number Recognition 

In the attentive processing stage, the late selection performed over the segments 

containing relevant numbers includes the following steps: 

(i) Segmentation. Each segment 
inumf  is further segmented by applying the graph-

based image segmentation algorithm introduced in [14]. This segmentation 

algorithm is adapted only with respect to the threshold value used to merge 

segments – we use a fixed threshold value   passed as an input parameter. 

(ii) Segment filtering. We discard subsegments whose dimensions (relative to the 

size of the containing segment 
inumf ), black/white pixel ratios or height-to-width 

ratios are not in the expected ranges for a digit. It should be noted that the segment 

filtering conditions are not algorithmically-driven but rather based on the authors’ 

qualitative and inherently limited insights into the domain problem. Therefore, 

they are subject to further refinement, as described in Section 3. 

(iii) Segment classification. For each remaining subsegment 'f , its feature vector 

)'(ˆ f  is extracted and compared to the ground-truth feature vectors in   (cf. Eq. 

(15)). If the maximum similarity value of )'(ˆ f  with each one of the ground-truth 

feature vectors is greater than the predefined threshold value 2 , i.e., 

,>)),'(ˆ(max 2 tfsim
t 

 (19) 

the segment is recognized as containing digit )'( fdig , where: 
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).),'(ˆ(maxarg)'( tfsimfdig
t




  (20) 

E.g., when two segments designated in Fig. 3(b) are passed to the attentive 

processing stage, the recognition results are indicated in Fig. 3(c). The digits after 

the decimal points are deliberately ignored, in accordance with the external 

requirements. 

3 Iterative Learning Loop 

The approach to digit detection and recognition introduced in Section 2 is subject 

to refinement through the iterative process of human-machine cooperative 

learning, combining automatic data-driven parameter adjustment with human-

driven model adjustment (cf. Subsection 1.1). 

The image corpora used in the iterative learning loop (and in the subsequent 

evaluation of the system, cf. Section 5) contain real-life electricity meter images 

with significant noise and incompleteness from various sources. Electricity meters 

are inconsistently illuminated, physically damaged (e.g., scratched glass) and 

obscured by dirt or dust. All the images were captured by naïve operators using 

standard Android-based phones. The training corpus consists of 955 images 

containing only one rate (i.e., one row of relevant digits and the surrounding 

context, similarly as in image given in Fig. 2). This corpus is used for automatic 

data-driven parameter adjustment. The test corpus, used for the purpose of 

evaluation, is described in Section 4. 

Table 1 

Parameters – marked with * if they are actually optimized 

Parameter  

n  - number of elements in a feature vector representing a pixel, cf. Eq. (5) * 

NM   - dimension of a grid of rectangular cells, cf. Eq. (7) * 

Dimension of the sliding window  

Steps of the sliding window along the x and y axes  

1 - threshold for digit detection in the pre-attentive processing stage, cf. Eq. (16) * 

 - threshold for graph-based segmentation in the attentive proc. stage, Sec. 

2.3.2 

* 

2 - threshold for digit recognition in the attentive processing stage, cf. Eq. (19) * 
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3.1 Stochastic Greedy Local Search 

The approach to digit detection and recognition is parameterized by a set of ten 

parameters (cf. Table 1) which are subject to data-driven optimization. The space 

of possible parameter assignments is too large for an exhaustive search. However, 

states in the search space are full assignments to all the parameters, which allows 

for applying a stochastic greedy local search algorithm. Similarly, as in deep 

learning approaches, the objective function is seen as a hilly landscape in the 

multidimensional space of parameter values [26], and therefore we apply an 

adapted hill-climbing algorithm with random restart [11, 37]. The algorithm is 

specified in Fig. 4 as a higher-order function, and its main idea may be described 

as follows. 

Hill-climbing with random restart 

Input:  number or random restarts: ,r  

parameter domains: ,,,, 110 nDDD   

fitness function ,: 110  nDDDh   

mutation oper.: )()(: 110110   nn DDDDDDg  . 

Output: optimized instantiation of parameters for the fitness function: 

),,,( 110 nppp  , where ).)(0( ii Dpni   
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Figure 4 

Hill-climbing with random restart 

The hill-climbing: 

1. The greedy local search starts from a randomly chosen instantiation of 

parameters. We refer to it as the current instantiation x . 
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2. For the given current instantiation x , a set )(xg  of neighboring instantiations 

is generated. Let 'x  be the most fit instantiation in set )(xg . 

3. If 'x  is more fit than x , then 'x  becomes the current instantiation, and the 

algorithm goes back to Step 2. Otherwise, the current instantiation is selected 

as a candidate for optimal solution. 

Multiple random restart: To reduce the probability of getting stuck in a local 

extremum, the hill-climbing is restarted from finite number of different, randomly 

selected instantiations or parameters. Each run of the hill-climbing algorithm 

generates a candidate for optimal solution. After multiple restarts of the algorithm 

are completed, the most-fit candidate is selected as optimal solution. 

Mutation (local changes in the search space)  

Input:  instantiation of parameters: ),,,,( 110  npppx    

parameter domains: .,,, 110 nDDD   

Output: set of n  instantiations of parameters. 

Algorithm: 
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Figure 5 

Mutation (local changes in the search space) 

We use the following input arguments to the hill-climbing algorithm. 

(i) Number of random restarts is set to five. 

(ii) Parameters. Not all parameters given in Table 1 are actually optimized. The 

dimension of the sliding window and the steps of the sliding window along both 

the axes were predefined in line with the external requirements (cf. the discussion 

point on efficiency in Section 4). In addition, the threshold value for digit 

detection in the pre-attentive processing stage is considered to be equal to the 

threshold value for digit recognition in the attentive processing stage. The 

complete instantiation of the fitness function is represented as a set of parameters 

marked with * in Table 1. 
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(iii) The fitness h  of a given instantiation of parameters is defined as the number 

of training samples that are recognized correctly and completely. 

(iv) The mutation operation is defined in Fig. 5. Mutation of a given instantiation 

of parameters ),,,( 110  npppx   generates a set of n  new instantiations, each 

of which differs from initial instantiation x  in only one parameter value, i.e., 

mutation involves only local moves in the search space. 

 

3.2 Learning through Human-Machine Cooperation 

Each iteration of the learning loop includes automatic data-driven parameter 

adjustment, followed by human-driven model adjustment. We describe two 

iterations conducted in the study. 

Iteration 1 – Automatic data-driven parameter adjustment: In the first 

iteration, the parameters are automatically optimized based on the introduced hill-

climbing algorithm and the training corpus. At the digit level, 94% digits are 

correctly recognized, 3.16% incorrectly recognized, and 2.84% not detected. The 

confusion matrix is given in Table 2. At the number level, 67.02% images are 

completely recognized. 

Table 2 

Confusion matrix in the first iteration 

 0 1 2 3 4 5 6 7 8 9 ND Total 

0 628 2 0 0 0 0 4 0 7 1 22 664 

1 22 452 0 0 0 0 1 0 6 5 17 503 

2 0 0 399 0 8 0 0 7 1 0 11 426 

3 0 0 1 434 2 0 0 0 10 3 16 466 

4 0 0 0 0 446 0 0 3 2 0 17 468 

5 1 0 0 1 0 404 3 0 4 4 14 431 

6 8 0 0 0 0 1 430 0 10 0 8 457 

7 0 0 3 0 0 0 0 440 0 0 10 453 

8 2 0 0 5 0 1 8 0 442 3 10 471 

9 1 0 0 4 0 1 2 0 4 422 11 445 

INS 78 19 15 15 29 7 23 6 95 34 - 321 

INS – segment incorrectly recognized as a digit; ND – digit not detected 

Iteration 1 – Human-driven model evaluation and adjustment: The analysis of 

the system’s performance shows that, out of 4784 digits, 136 digits (i.e., 2.84%) 

are not detected. On the other hand, the number of segments incorrectly 

recognized as digits is more significant – 321 segments (which equals to 6.71% of 

all digits) – and affects the accuracy of the system more intensively. Thus, a new 
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insight into the domain problem emerges, which would otherwise remain hidden 

because it is not directly related to the parameter adjustment: the segment filtering 

(cf. point (ii) in Subsection 2.3.2) is the critical point of the system. It is clear that 

the segment filtering conditions should be adapted accordingly. However, their 

modification is a trade-off. By tightening the segment filtering conditions, the 

number of segments incorrectly recognized as digits will decrease, but it can be 

also expected that the number of digits that are not detected will increase. 

Therefore, the conditions were modified by the authors with the intention to 

achieve a balance between these two confronting factors. In addition, this 

modification may affect the appropriateness of the parameter values automatically 

derived in the previous phase. To address these issues, the second iteration of the 

learning loop is started. 

Iteration 2 – Automatic data-driven parameter adjustment: In the second 

iteration, the parameters are again automatically optimized. The optimization 

resulted in the same instantiation of parameters as in the first iteration, and the 

confusion matrix is given in Table 3. 

Table 3 

Confusion matrix in the second iteration 

 0 1 2 3 4 5 6 7 8 9 ND Total 

0 626 2 0 0 0 0 3 0 7 1 25 664 

1 16 449 0 0 0 0 1 0 2 3 32 503 

2 0 0 399 0 8 0 0 6 1 0 12 426 

3 0 0 1 434 2 0 0 0 9 3 17 466 

4 0 0 0 0 446 0 0 3 2 0 17 468 

5 1 0 0 1 0 404 2 0 2 4 17 431 

6 6 0 0 0 0 1 429 0 5 0 16 457 

7 0 0 1 0 0 0 0 436 0 0 16 453 

8 2 0 0 5 0 0 5 0 442 3 14 471 

9 1 0 0 4 0 0 0 0 4 422 14 445 

INS 29 12 6 4 19 7 8 2 45 17 - 149 

INS – segment incorrectly recognized as a digit; ND – digit not detected 

Iteration 2 – Human-driven model evaluation and adjustment: From Tables 2 

and 3, it can be derived that the total number of segments that undergone 

classification in the attentive processing stage was reduced from 4969 in the first 

iteration to 4753 in the second. I.e., the number of processed segments decreased 

for 216 ( 47534969 ). This set of 216 omitted segments can be divided into two 

subsets. The first subset contains 172 segments that were incorrectly detected as 

digits in the first iteration, but correctly rejected in the second iteration. The 

second subset contains 44 segments that were correctly detected as digits in the 

first iteration, but not detected in the second iteration (cf. Table 4). The first subset 

is dominant, which implies that the modification of the segment filtering 
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conditions in the first iteration resulted in a more balanced relationship between 

the number of segments incorrectly recognized as a digit, and the number of digit 

that were not detected. 

In addition, the recognition accuracy at the digit level slightly decreased: from 

94% in the first iteration to 93.79% in the second. However, the recognition 

accuracy at the number level increased from 67.02% to 72.46%. This is not 

contradictory – the number recognition accuracy is increased due to the fact that 

the number of segments that were incorrectly detected as digits was significantly 

decreased as a result of the modification of the segment filtering conditions. These 

conditions can be further optimized in subsequent iterations, but the first two 

described iterations suffice to illustrate the proposed approach. 

Table 4 

Filtered segments 

Iterative 

learning loop 

# segments in the 

attentive stage 

Average # segments 

per image 
St. dev. INS ND 

1st iteration 4969 5.20 1.02 321 136 

2nd iteration 4753 4.98 0.87 149 180 

Abs. difference 216 - - 172 44 

INS – segment incorrectly recognized as a digit; ND – digit not detected 

4 Evaluation and Discussion 

The automatically calculated instantiation of parameters and the human-adjusted 

segment filtering conditions are evaluated on the test corpus containing 721 

images containing only one rate (and the surrounding context). To avoid bias (e.g., 

training on the test data), the training corpus, described in Section 4, and the test 

corpus do not overlap. More precisely, it is not only that the training and test 

corpora do not include images of the same electricity meters, but they also do not 

include images of the same electricity meter types. 

Table 5 

Confusion matrix in the evaluation phase 

 0 1 2 3 4 5 6 7 8 9 ND Total 

0 406 6 0 1 0 0 2 0 8 2 10 435 

1 1 340 0 0 1 0 2 0 3 0 36 383 

2 0 0 320 0 1 0 0 10 1 0 7 339 

3 1 0 0 272 0 3 1 0 14 15 13 319 

4 0 0 2 0 339 0 0 1 1 0 14 357 

5 2 0 1 1 0 316 12 0 1 3 18 354 
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6 10 0 0 4 1 5 321 0 7 5 9 362 

7 0 0 2 1 0 0 0 328 2 0 12 345 

8 2 1 0 0 0 1 5 0 344 3 11 367 

9 3 1 0 1 0 0 0 0 5 317 9 336 

INS 8 40 7 9 10 6 24 15 57 10 - 186 

INS – segment incorrectly recognized as a digit; ND – digit was not detected 

The confusion matrix is given in Table 5. The obtained results are comparable to 

the results from the training phase. At the digit level, 91.83% digits are correctly 

recognized, 4.31% incorrectly recognized, and 3.86% not detected. At the number 

level, 61.03% images are completely recognized. The number of filtered segments 

per image is 5.05, with standard deviation of 0.95. For the obtained digit 

recognition rate (i.e., dp  is equal to 93.79% in the training phase, and 91.83% in 

the testing phase), the reported five-digit number recognition rate is close to the 

expected value (which, for the illustration purposes, can be approximated as 5
dp ). 

We recall that this accuracy was obtained for images with significant noise and 

incompleteness, and emphasize, in addition, the following points. 

(i) Reduced storage requirements. The recognition process rely only on a set of 

ten ground-truth feature vectors describing digits in set  9,,1,0   (cf. set   in Eq. 

(15)). The recognition accuracy would increase with the number of the ground-

truth feature vectors, but we wanted to reduce the storage requirements, in order to 

make this approach applicable for embedded devices such as mobile phones. 

(ii) Generalizability and contextual information. Most aspects of the proposed 

approach to digit recognition are not domain-specific, including the pre-

processing, feature extraction, feature vector comparison, segmentation, and 

segment classification. A small domain-specific part of the approach includes the 

ground-truth feature vectors, conceptualization of number as a horizontal pattern 

of digits (cf. Fig. 2(c)), and segment filtering (cf. point (ii) in Subsection 2.3.2). 

However, the domain-specific information just encodes the properties of the 

ground-truth templates, and are thus adaptable to other object recognition 

domains. The proposed approach does not utilize any additional contextual 

information that might improve the recognition accuracy (e.g., the expected 

number of digits per number, etc.). That was an intentional decision, in order to 

additionally support our statement on the generalizability of the approach. 

(iii) Efficiency. Special attention was devoted to the efficiency of the prototype 

system. Searching through an image with a sliding window in order to conduct 

early selection of relevant image segments (cf. Subsection 2.3.1) is time 

consuming operation. Therefore, as already mentioned in Section 3.1, we decided 

to use only one predefined dimension of the sliding window, and the steps of the 

window along the axes were also predefined and constant. If we had applied more 

sliding windows of different dimensions and with different steps, it would have 

additionally increased the recognition accuracy. However, we decided to adopt a 
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trade-off between the accuracy and the efficiency of the system. The average 

processing time per image is 0.57 s (with standard deviation of 0.22 s) in the 

training phase, and 0.59 s (with standard deviation of 0.17 s) in the testing phase 

(measured on a standard personal computer). 

(iv) Single-frame recognition. In the reported experiment, each electricity meter 

was represented by one single image. In a practical application of this technology 

(e.g., using an Android-based phone), multiple frames of an electricity meter 

would be captured and processed. Since each recognized digit is assigned a 

similarity score (cf. Eq. (19)), the captured frames can be evaluated, and the most 

appropriate candidate selected – which would additionally increase recognition 

accuracy. 

Conclusions 

This paper identified two separate but related contributions. First, we introduced a 

cognitively-inspired, non-connectionist approach to digit detection and 

recognition, in the presence of noise. Second, we proposed a novel approach to 

human-machine collaborative learning. The basic tenet of this approach is the 

refinement of a human designed software model, through the iterative learning 

loop, combining automatic data-driven parameter adjustment with human-driven 

model adjustment. This approach is demonstrated through a real-life study of 

automatic electricity meter reading in the presence of noise. 

In the terminology of cognitive info-communications, automatic object 

recognition is referred to as an elementary cognitive capability [3, 4], in contrast 

to the higher level cognitive capabilities such as affective computing [37], human 

augmentation and health monitoring [16]. However, the proposed approach is 

relevant to the field of cognitive info-communications in two respects. One of the 

fundamental cognitive capabilities that remained under-investigated in this field is 

learning from small sets of prior experiences. Our approach to digit detection and 

recognition tends to meet, although only partially, this desideratum – its advantage 

is that it does not require significant training data, which is demonstrated in [18]. 

On the other hand, machine learning-based systems are usually developed in an 

extrinsic manner, i.e., a system is trained as a whole. The automatic adjustment of 

a large number of parameters leaves the practitioner out of the learning loop – it 

neither allows for human learnability in the training phase, nor does it provide the 

practitioner with insights into the performance of individual subsystems. In 

contrast to this, we proposed an approach to human-in-the-loop supervised 

learning. To illustrate human learnability, in Subsection 3.2, we discussed the idea 

that the iterative learning loop enables the practitioner to recognize the segment 

filtering, as critically important and extends understanding. More generally, the 

iterative learning loop is intended to make the process of software development 

more explanatory to a practitioner, by enabling them to intrinsically develop and 

evaluate individual subsystems, while keeping the advantages specific to 

supervised learning. In the dominant trend of ever more complex systems, based 
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on black-box machine learning techniques, making the underlying computational 

models more human-interpretable, is an important requirement for computer-aided 

education in computer science. 
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