
Acta Polytechnica Hungarica Vol. 16, No. 5, 2019

State-space Analysis of the Interval Merging Bi-
nary Tree

István Finta

Nokia, Bell Labs
H-1083, Budapest, Bókay street 36-42
istvan.finta@nokia-bell-labs.com

Sándor Szénási

Óbuda University
H-1034, Budapest, Bécsi street 96/b
szenasi.sandor@nik.uni-obuda.hu

Abstract: In the course of transmission through networks a particular packet, like a Storm
tuple or a performance/fault management (PM/FM) report in XML format of an Operation
Support System (OSS) application, data loss/out of order arrival/duplication phenomena may
cause the packet not to arrive at the destination, arrive exactly once or to arrive in several
copies. These anomalies have to be handled both on the lower and higher level network or
application layers to an extent depending on the later usage. The efficiency of handling de-
pends on the applied data structures.
To detect packet loss and duplication, a special, tree-like data structure was proposed earlier,
the Interval Merging Binary Tree (IMBT). We analyzed IMBT from several perspectives and
we compared its performance with other well-known tree variants, under various circum-
stances. However, in contrast to a completely balanced binary search tree, it is impossible
to associate to the newly developed data structure a one dimensional function, dependent on
the number of input keys, to determine for instance the average cost of an operation. Never-
theless, for further development, it is essential in case of any data structure, to determine the
actual boundaries of its applicability.
In this contribution we explore the state space of IMBT in order to be able to classify the data
structure regarding the input pattern during the later performance analysis. We used in the
modeling Fibonacci sequences, bipartite multi-graphs and combination tables.

Keywords: data structure; balanced binary tree; bipartite graph; fibonacci sequence; state
space; combination table;

– 71 –

I. Finta et al. State space Analysis of the Interval Merging Binary Tree

Introduction

Performance management is an OSS application in which performance measure-
ment records, generated periodically by network elements, are processed in order to
assess the performance of the network. Each record consists of performance-related
counters (key + value) each describing a specific aspect of the performance within
a period. The periodicity of records makes it possible to associate incremental keys
to the individual counters from the records, where the value is the content of the
counter itself. The percentage of lost records is typically very low, therefore rela-
tively few counters are lost in the transmission. Counters are converted into Key
Performance Indicators (KPI-s) via Extract Transform Load (ETL) functionality for
which we used Storm [2], a stream processing engine. Because of the at-least-once
processing pattern of Storm, duplicated and out-of-order keys might occur. Packet
loss and duplication of raw measurement data will lead to errors when aggregat-
ing counters into KPI-s, conveying a wrong perspective about the performance of
the network, therefore loss and duplication cannot be tolerated in this particular use
case.
In order to decide in real time whether a counter is identified by a key has al-
ready arrived or not and to insert it if not, we need a space-efficient data structure
which is fast searchable and allows fast insertion of keys. After careful consid-
erations, we ruled out a number of alternatives. The examined alternatives were
external databases, Bloom filter [3], Balanced BSTs[4] [5], hash tables [4]. Ex-
ternal databases turned out to be too slow. We ruled out Bloom filters because it
allows false positives: for a key reported to be present we know only with certain
probability its true presence in the data structure. This uncertainty is not allowed
in our case. Balanced BSTs were ruled out due to their linearly increasing space
need, which is proportional with the number of handled keys by them so far. The
proportionally increasing space need was a drawback regarding hash tables as well.
Additionally the need for periodical ’re-hashing’ in an upper-unbound environment
would also significantly decrease the computation performance. Finally we arrived
to proposing an efficient data structure and associated algorithms that we called In-
terval Merging Binary Tree (IMBT)[1].
In the unpublished [6] we have examined several tree layout instances and extreme
scenarios for the arrival pattern of keys. Additionally we have deducted the formu-
las regarding the cost of SEARCH operation, as the basis of other operations, like
INSERT or REMOVE. We have examined both theoretically and experimentally
the performance of IMBT for an exponential distribution of the key arrival pattern
[7]. Until now if only N, the number of IMBT handled keys, was given, we could
not estimate nor even model accurately the state space of IMBT. State space mod-
elling can facilitate the mapping of the statistical distribution-based input patterns
into the IMBT state classes, if these exists at all. In the more general interpreta-
tion of state space we mean an N-dependent numerical value that characterizes the
BST, and with normalization by N a statement can be made regarding the cost of
operations. In case of traditional BSTs if the tree arrangement is given, then we
can easily determine that N-dependent value which is the base of metrics like aver-
age time complexity of SEARCH operation etc. However, in contrast to traditional

– 72 –

Acta Polytechnica Hungarica Vol. 16, No. 5, 2019

BSTs, the IMBT state space is a multivalued function of N.
Therefore the analysis is divided into the following sections, through which we will
unveil the aspects affecting the N multivalued dependency.
In section Basics of the Interval Merging Binary Tree we briefly introduce the IMBT
data structure. From the description it will be clear that the analysis of the tree can
be split into two independent aspects. In section Interval State Space we will show
the relation between the possible number of arrangements of intervals across the
tree and the Integer Partitions [8]. This is the first aspect.
The second aspect will be introduced in section Traversal Strategy Based Weight
Classes. In this section we will describe the relationship between IMBT and a priv-
ileged tree arrangement, the completely balanced binary search tree. Here we will
highlight the relationship between the Fibonacci sequences [9] and the number of
comparisons required to reach a set of intervals within IMBT. In case of not limiting
the examination to the completely balanced trees, according to Caylay’s theorem
[10] nn−2 different tree arrangements should be considered, where n is the number
of nodes in a tree, which is impractical and turns out not to be needed.
In section Bipartite Graphs and Combination Tables we combine the two approaches
into one model. During the combination we would like to determine the possible
number of different values, which represents in fact the state space. In case when we
just simply multiply the number of integer partitions of N with the different num-
ber of ”step classes”, then we get many duplicate values. That is, the state space
would be highly overestimated. To mitigate this, we will introduce G(I,W) bipar-
tite graphs as a representation. In the course of matrix representation of the graphs
we will apply a simplification and we can show that the result is nothing else than a
combination table. The degrees of freedom of a combination table is a huge number.
Regarding the enumeration of non-conform combination tables, or G(I,W) graphs
in our case, there are available results like [11], or [12], but as will be shown in our
case both sides of the table increase deterministically, according to integer partitions
and Fibonacci sequences. In our work we will also apply an additional equal trans-
formation, like in the previous two references, to be able to formulate the criterion
to get such sum of two members multiplications where the duplicates are minimized
or zero. Therefore our result can be considered as an upper bound of the state space
of IMBT in case when N is given.

Basics of the Interval Merging Binary Tree

IMBT is a data structure of disjoint sets, organized into a tree. The speciality of the
sets is that each must contain all the keys between the greatest and the lowest value
of a particular set. Sometimes these type of sets are called integer interval, hence
we named the data structure interval merging binary tree, where merging refers to
the operation of immediate merging 2 disjoint sets that become joint as a result of
an incoming key.

As stated in the Introduction, we assume an input stream of keys where the key is a
sequence number. Keys are arriving mostly ordered respective to the sequence num-
ber. The task is to filter out those entries that arrived already once, meaning that the

– 73 –

I. Finta et al. State space Analysis of the Interval Merging Binary Tree

sequence number has had already this value in an earlier key instance. Additional
boundary conditions regarding the arrival pattern apply:

1. upper unbounded range: there is no upper bound of the sequence numbers
apart from the limit of the binary representation of this field,

2. lower unbounded range: at any point in time a new key can arrive to the
system with a sequence number lower than any sequence number encountered
so far,

3. there are long, contiguous intervals of keys with relatively few ’gaps’ (missing
keys) in between,

4. after a while almost all keys arrive,

5. key duplication (i.e. same key arrived at least twice) on the arrival side is
possible due to some reason.

Let’s suppose that keys arrive to IMBT in the following order:

...k0,k−1,k2,k3,k7,k5,k4,k6,k−2, ...

According to a naive approach all elements should be stored in a hash or in a binary
search tree which is easily searchable, but still the binary search tree or the hash
remains an upside-downside open system with infinite storage requirements when
keys can arrive with infinite delay.

The first tweak to the naive approach is to represent the arrived keys as pairs. So,
elements will be stored like the following:

(k0,k0),(k−1,k−1),(k2,k2),(k3,k3),(k7,k7),(k5,k5),(k4,k4),(k6,k6),(k−2,k−2).

At first sight it looks like that we did not win anything, but only doubled the memory
footprint. The second tweak is not to automatically put newly arrived elements at
the end, but rather to organize the elements in an ordered fashion, filtering at the
same time duplicates found during the ordering process. This can be conceptually
a sequence of 3 operations: insert at the end, order by key and a filter to skips the
entry if it is already found:

(k−2,k−2),(k−1,k−1),(k0,k0),(k2,k2),(k3,k3),(k4,k4),(k5,k5),(k6,k6),(k7,k7).

The third tweak is to add an operation that we call interval merging: every pair
of neighbour values is checked and if the values are consecutive, the two pairs are
converted into one, where the first value of the resulting pair is the first value of the
first pair and the second value of the resulting pair is the second value of the second
pair. The skeleton code is available in [1].

In the following we describe the operation of the algorithm for our small data set:

• k0 arrives, our data structure will store the following element:

(k0,k0)

– 74 –

Acta Polytechnica Hungarica Vol. 16, No. 5, 2019

• k−1 arrives, our data structure will store the following element:

(k−1,k0)

• k2 arrives, our data structure will store the following elements:

(k−1,k0),(k2,k2)

• k3 arrives, our data structure will store the following elements:

(k−1,k0),(k2,k3)

• k7 arrives, our data structure will store the following elements:

(k−1,k0),(k2,k3),(k7,k7)

• k5 arrives, our data structure will store the following elements:

(k−1,k0),(k2,k3),(k5,k5),(k7,k7)

• k4 arrives, our data structure will store the following elements:

(k−1,k0),(k2,k4),(k5,k5),(k7,k7)

Then

(k−1,k0),(k2,k5),(k7,k7)

• k6 arrives, our data structure will store the following elements:

(k−1,k0),(k2,k6),(k7,k7)

Then

(k−1,k0),(k2,k7)

• k−2 arrives, our data structure will store the following element:

(k−2,k0),(k2,k7)

So, at the end storing only two intervals are required to represent 9 arrived keys.
In case of we would organize these intervals into a binary tree then, as mentioned in
the Introduction, the IMBT search operation state space would be influenced from
two different aspects:

– the length of the intervals,

– the steps/comparison required to find that interval, that is the position of the
interval within the tree.

In the following section we will examine the role of the intervals in the state space
analysis of IMBT.

– 75 –

I. Finta et al. State space Analysis of the Interval Merging Binary Tree

Interval State Space of IMBT

Fig.1, Fig.2 and Fig.3 indicate various types of evolutions of the tree as a function
of the incoming keys, where in all cases we have 4 input packets.

Figure 1
IMBT interval evolving when no direct neighbour exists.

On the figure N represents the T time as well. By looking to the figure from the right side, the
remaining axes display a histogram of the intervals in different moments.

Figure 2
IMBT interval evolving when the keys are subsequent

As it is visible in case of four keys (N = 4), based on the possible number of neigh-
bours, the following scenarios can be distinguished:

– None of the keys are neighbour of each other, like Fig.1,

– Two of them are neighbours and the other two are not,

– Two of them are neighbours and the remaining ones as well,

– 76 –

Acta Polytechnica Hungarica Vol. 16, No. 5, 2019

Figure 3
IMBT interval evolving when there are both neighbour and stand alone keys

– Three of them are neighbour and one is not, like Fig.3,

– All the keys are neighbour of each other, like Fig.2.

Therefore we can say that according to Hardy and Ramanujan [8]:

Theorem 1. the number of possible interval states in case of IMBT, at T = N time,
is equal with the number of ways N can be written as a sum of positive integers:

lim
N→∞

p(N)≈ 1
4N
√

3
eπ
√

2N/3 (1)

We can identify the addends of the sum as the individual interval lengths of the nodes
in the IMBT. In this case for the average interval lengths a, considering the list items
above, we get the following values, respectively: 4/1 = 4, 4/2 = 2, 4/2 = 2, 4/3,
4/4 = 1. As it is visible there are two equivalent values: 2. Therefore it is generally
true that the number of integer partitions is a rough upper estimation regarding the
possible number different averages for a given input size N.
Additionally p(N) does not say anything about the weight of the intervals based on
their position in the tree. Since the same decomposition may led to very differently
weighted arrangements it matters if for instance the intervals of 8 is written in e.g..:
1+ 1+ 4+ 1+ 1 or 4+ 1+ 1+ 1+ 1 or 1+ 1+ 1+ 1+ 4 form. Supposing that
the intervals are organized into a balanced binary search tree, the cost of the search
operation in the first case is the most favourable, and in the last case is the least
favourable. To account for these differences, in Traversal Strategy Based Weight
Classes we will factor the transversal strategies in our analysis.

Traversal Strategy Based Weight Classes

In Fig.4 the arrows with number represent the jth comparison during the SEARCH
operations. Here we would like to mention that, for the sake of simplicity, during
the comparisons the less or equal will be considered as one atomic step. The dark

– 77 –

I. Finta et al. State space Analysis of the Interval Merging Binary Tree

Figure 4
IMBT weight classes caused by the traversal strategy

background of the number expresses that the result of the comparison can be posi-
tive (that is, the node covers more than one key). In this figure, instead of boundaries
of the intervals, the same information is displayed in the nodes as on the arrows.
As we can see if the key to be searched for is equal with the left hand value of the
root node then exactly one comparison will be performed. If the key to be searched
for is in between the left and right hand values of the root node or equal with the
right hand value then two comparisons will be performed.
If the key is greater than the right hand value of the root node and falls into the
interval of the right hand child’s left and right hand values then three or four com-
parisons are required, depending on the exact value.
If the key is less than the left hand value of the root node and falls into the interval
of the right hand child’s left and right hand values then two or three comparisons
are required, depending on the exact value.
By continuing the examination of the distribution of the different classes of inter-
vals, based on the required number comparisons, we can recognize the following
rules, when the intervals are organized into a completely balanced tree.
Considering the root (first) level there is one such interval where (1,2) compari-
son can occur. In the second level there is one interval where (2,3) and one inter-
val where (3,4) comparison(s) can occur. Finally, in the third level the cumulated
number of intervals where (1,2) and (2,3) comparison(s) can occur is unchanged.
However, the number of (3,4) comparison intervals is increasing from one to two.
Additionally two (4,5) and one (5,6) comparison intervals appear.
By the cumulative number of types, as more and more layers are taken into account,
we will get the pattern described in Table-1. Examining carefully the lists we can
realize that

Theorem 2. the central element of each row composed from cumulative number of
weight types is the Fibonacci sequence itself. The numbers in the lists (lines in this
case), preceding the central elements, are also the evolving Fibonacci sequences
themselves. The rest of the numbers must satisfy the requirement that the sum of
the numbers is equal with 2n−1 in every nth line.
However, another rule also can be recognized there:

Theorem 3. the numbers in a line from Table-2 are equal to the sum of the two
preceding numbers of the previous line.

– 78 –

Acta Polytechnica Hungarica Vol. 16, No. 5, 2019

Table 1
Distribution of weight classes in case of the IMBT is completely balanced.

The Fig.4 snapshot is marked with bold.

Distance from the root
Total number [number of comparisons

of nodes in IMBT regarding the left hand value]
1 2 3 4 5 6 7 8 9 10 11

1 1
3 1 1 1
7 1 1 2 2 1

151515 111 111 222 333 444 333 111
31 1 1 2 3 5 7 7 4 1
63 1 1 2 3 5 8 12 14 11 5 1

Table 2
Fibonacci sequences in the cumulated weight classes

111
1 111 1
1 1 222 2 1
1 1 2 333 4 3 1
1 1 2 3 555 7 7 4 1
1 1 2 3 5 888 12 14 11 5 1

Until now we have shown that there are two distinct aspects influencing the state
space of IMBT. One is if how many ways the number of keys can be decomposed
into integer partitions.
The second aspect is represented by the weight classes. It is based on the number of
nodes and depends on the associated traversal strategy.
Now, to be able to determine the combined number of input pattern classes some-
how we have to put these components together. In Bipartite Graphs and Combina-
tion Tables on the modeling of IMBT State Space we will present this combination
procedure and the resulting mathematical models.

Bipartite Graphs and Combination Tables on the mod-
eling of IMBT State Space

To be able to start the combined analysis we will perform the following mappings.
Let’s denote the length of the interval belonging to an ni node from the IMBT by
li ∈ L, where L is a multi-set. Then we map the set of same length of intervals onto
i1, i2, ..., ik ∈ I elements. This means that by having the L = {l1, l2, ..., ln} lengths,
where the values of lh = li = ... = l j is equal, then this fact results in one new el-
ement, ip, in the I set. That is the following lh → ip, li → ip, l j → ip surjection is
performed in case of lh = li = l j. Therefore k ≤ n.

– 79 –

I. Finta et al. State space Analysis of the Interval Merging Binary Tree

Let’s denote the number of comparisons required to achieve the left hand value of
an arbitrary ni node by si ∈ S, where S is a multi-set. Then let’s map the traver-
sal strategy based identical comparison weight types onto w1,w2, ...,w j ∈W ele-
ments. This means that by having the S = {s1,s2, ...,sn} lengths, where the values
of sh = si = ... = s j are equal, then this fact results in one new element, wp, in the
W set. That is, the following sh→ wp,si→ wp,s j → wp surjection is performed in
case of sh = si = s j. Therefore k ≤ n.

Since the newly defined I and W are two disjoint sets we can consider them as the
vertices of a G(I,W) bipartite (multi-)graph. We will assign degrees to each vertex
in the following manner:
The degree of each ii vertex is equivalent with the number of those particular interval
lengths. According to this in case of lh = li = l j the degree of the associated ii vertex
is d(ii) = 3.
The degree of each wi vertex is equivalent with the number of those particular weight
types in the search tree.
Therefore we can write that

Theorem 4. ∑
j
i=1 d(wi) = ∑

k
i=1 d(ii) = n = |E|, where E = {e1, ...,en} is the set of

the ei edges of G(I,W).

The fact that the above two sets, I and W , are the independently different classifi-
cations of the same nodes of the IMBT implies that the sum of the degrees of the
vertices in both sets is equal to n. �

Let’s consider an IMBT arrangement/configuration where n = 4, and both I and W
sets contain one-one vertex with degree two, and two additional vertices with degree
one-one. So, d(i1) = d(w1) = 2 and d(i2) = d(i3) = d(w2) = d(w3) = 1. At this
moment regarding N we can only say that N ≥ n.
It is obvious that to get the above I set two of the lengths must be equal, eg. l1 = l2,
and the other must differ from both l1 = l2 6= l3, l1 = l2 6= l4 and l3 6= l4.

Definition: Those L interval length multi-sets are called interval lengths ratio base
classes, denoted by Lb, in which

at least one li exists which is co-prime to all the other l j, such that i 6= j
supposing that li 6= l j, or

if li = l j for all i 6= j, than li = l j = ...= lk = prime number.

That is, L is an Lb if

∃li ∈ L | (∀i 6= j∧ li 6= l j⇒ gcd(li, l j) = 1) ∨ (∀i 6= j ⇒ li = l j = prime number).

(2)

If L = {l1, l2, l3, l4} is an interval lengths ratio base class, that is L = Lb, then Lb

determines all the N1,N2, ..., which differ from each other by only an integer factor
for a given (Lb,n = |Lb|) pair. This representation/decomposition is unique, except

– 80 –

Acta Polytechnica Hungarica Vol. 16, No. 5, 2019

for the order of the factors:

Nx = (d(i1)× l1× x) + (d(i2)× l3× x) + (d(i3)× l4× x)

= x× (d(i1)× l1 + d(i2)× l3 + d(i3)× l4).
(3)

where x ∈ {1,2,3, ...}. If n is given that is the maximum information we can get
regarding N.

In Fig.5 all the different possible configurations are shown for the above G(I,W),
where |I|= |W |= 3 and |E|= n = 4. That is, there are three-three vertices on both
sides of the G graph.

Figure 5
G(I,W), where |I|= |W |= 3 and n = 4

At this stage we can claim that N ≥ 4. If we are aware of the l1, l2, l3, l4 ∈ L values,
e.g.: l1 = l2 = 1, l3 = 2 and l4 = 3 and therefore L1 = Lb then we can say that N1 = 7.
However, N2 = 14,N3 = 21, ... and L2,L3 6= Lb.

As it is visible from the Fig.5 there are seven different possible configuration. Re-
garding the number of possible configurations, in case of a given (L,n) pair, till now
we have a mathematical model as G(I,W) is a bipartite graph. We can formulate
the following

Theorem 5. The simplified adjacency matrix representation of a G(I,W), which is
derived from an IMBT according to the above process, corresponds to a contingency
table.

Let’s assume an G(I,W) bipartite graph derived from an IMBT. Let’s prepare the
adjacency matrix of G(I,W), where parallel edges are allowed, in the following
manner. Since G(I,W) is a bipartite graph there are no edges between the vertices
belonging to the same vertex set. Then we will apply the following simplification:
instead of enumerating all the points from both sets on the right side and the top of
the adjacency matrix merely the points from I will be displayed with the associated
d(ii) values on the right side. On the top of the matrix only the points from W will
be displayed with the associated d(w j) and values.
The edges appear as numerical entries in the cells of the matrix. The value of a

– 81 –

I. Finta et al. State space Analysis of the Interval Merging Binary Tree

particular cell represents the number of edges between the ii and w j points. However
the d(ii) and d(w j) values are constraints regarding the sum of a given i row and j
column.
From Theorem 4 we know that the sum of cells in a row is equivalent with the
degree of that particular vertex. The same is true for all columns. Therefore the
sum of sums of every row is equivalent with the sum of sums of every column.
This feature of the simplified adjacency matrix is corresponding to a contingency or
combination table, which may contain discrete samples of the same multitude from
two different points of view. �

In Fig.6 the simplified adjacency matrix representation of the G(I,W) graphs from
the Fig.5 is shown. Since the edges do not appear directly, the simplified adjacency

Figure 6
Simplified adjacency matrix of G(I,W)

matrix remains unchanged in case when two different, ek and el edges that are not
sharing on any vertices on any of their ends, are mutually replaced with each other.
This holds also for the case when neighbours edges, sharing on a multi-degree ver-
tex, replace their non-sharing ends with each other.
Therefore from this simplified adjacency matrix like it is still hard to establish the
formal condition of states being different, that is the total weight of the IMBT. The
number of states for a given (I,W) is the different number of total weights of the
IMBT.

Nevertheless, we can apply the following transformation without violating the va-
lidity of the transformed model. During the transformation we are composing so
called domains in the matrix in a way that every row(or column) with value d(ii) (or
d(w j)) will be substituted with d(ii) (or d(w j)) rows(or columns), where the con-
straint value of each row is ’1’. Therefore the 1×1 cells, which are in the cross of
the d(ii) row and the d(w j) column, will be replaced by such a domain that consists
of d(ii)×d(w j) cells.
In Fig.7 the domain composition of the above G(I,W) is visible, where the domains
are marked/surrounded by dotted lines.

Figure 7
G(I,W) simplified adjacency matrix transformation to domain representation

– 82 –

Acta Polytechnica Hungarica Vol. 16, No. 5, 2019

In Fig.8 the domain transformed matrix representation of the Fig.5 examples are
shown. The numbers with blue background mark the related G(I,W) from the ex-
amples. Let’s denote the set of all the G(I,W) graphs belonging to the same partition

Figure 8
G(I,W) examples with domain representation.

The numbers with blue background marks the related G(I,W) from the above examples.

of N by PN,Li . From the Interval State Space Section we know that i∈ {1...p(N)}. A
particular Gk(I,W) ∈ PN,Li expresses the n members sum of two members products,
where the members of the products are from the Li and W sets respectively. There-
fore the Gk(I,W)∈ PN,Li determined sum of products can be mapped onto the IMBT
state space. Now we will define the subset of PN,Li , denoted by Ps

N,Li
, according to

the following.
Ps

N,Li
is the subset of the PN,Li set that contains the maximum number of Gi(I,W)

graphs from PN,Li , so that in the G(I,W) associated transformed matrices the sum
of cells are different for all the (Gi,G j) i 6= j pairs in at least 4 domains.

Theorem 6. |Ps
N,Li
| is an upper bound regarding the possible number of IMBT states

belonging to an N→ Li partition.

Let’s consider in the following lengths l1, l2, ...ln and steps s1,s2, ...sn. Let’s addi-
tionally assume that there are i elements from both the l’s and s’s where the as-
sociated lengths and steps are equivalent with each other. Additionally there are
two additional j and k elements from both L and S where the associated values are
the same and i+ j + k ≤ n. Let the associated value of the i elements be vi = 2,
v j = 3 and vk = 4. Then there will be such a G1(I,W) and G2(I,W) bipartite
graphs that are identical in every other pairings regarding the member of the prod-
ucts except the G1→ r1 = ...+ li,i× si,i + l j,1× s j,1 + ...+ l j, j× sk,1 + lk,1× s j, j and
G2→ r2 = ...+ l j,1×si,i+ li,i×s j,1+ ...+ lk,1×s j, j+ l j, j×sk,1. In this case (G1,G1)
pair satisfies the above condition regarding the sum of domains, however the associ-
ated r1 and r1 results are identical, therefore this represents the same state of IMBT.
�

From the above we can formulate the following

– 83 –

I. Finta et al. State space Analysis of the Interval Merging Binary Tree

Theorem 7. The upper bound of the IMBT state-space in case of knowing only N,
and the same n number of lengths are always sorted into the same tree structure no
matter whatever it is:

IMBTStates(N) = |Ps
N,L1
∪Ps

N,L2
∪ ...∪Ps

N,Lp(N)
| ≤

p(N)

∑
i=1
|Ps

N,Li
|. (4)

In case of a completely balanced IMBT the degrees belonging to a particular wi are
equivalent with the corresponding number from the corresponding line of Table-2.
For instance in case of n = 7 we can identify the third line of Table-2. Therefore we
know that the number of different weights is 5. And the seven nodes are sorted into
five classes according to the followings d(w1) = 1,d(w2) = 1,d(w3) = 2,d(w4) =
2,d(w5) = 1.

Conclusions
In this contribution we have introduced a special tree structure, the IMBT. Then we
have pointed out the aspects contributing to the state space of this data structure and
we provided an upper bound for the cardinality of this state space.
Now we have a mathematical model through we can perform measurements and an
assessment of a concrete G(I,W) representation to which a series of keys tends. This
might be a possible classifier regarding the statistical distribution of the key arrival
process. In the following we plan to determine some correlation/combination tables
for different distributions.

References

[1] Finta, I., Farkas, L., Sergyán, Sz., Szénási, S.: Interval Merging Binary Tree,
ICA3PP 2017, Helsinki, Finland, August 21-23, 2017
DOI:10.1007/978-3-319-65482-9

[2] STORM - A distributed real-time computation system, http://storm.

apache.org/documentation/Home.html, last visited 2019-01-02

[3] Bloom, B. H.: Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, Volume 13 Issue 7, pp 422-426, New York,
NY, USA, July 1970.

[4] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algo-
rithms (3rd ed.). MIT Press and McGraw-Hill, 2009.
ISBN:0-262-03384-4

[5] Bayer, R.: Symmetric binary B-Trees: Data structure and maintenance algo-
rithms, Acta Informatica, Volume 1, Issue 4, pp. 290-306, 1972.
DOI:10.1007/BF00289509

[6] Finta, I., Farkas, L., Szénási, S.: Parametric Analysis of Interval Merging Bi-
nary Tree, Digital Communications and Networks, Initial submission: October

– 84 –

http://storm.apache.org/documentation/Home.html
http://storm.apache.org/documentation/Home.html

Acta Polytechnica Hungarica Vol. 16, No. 5, 2019

25th, 2017
ISSN: 23528648

[7] Finta, I., Élias, G., Illés, J.: Packet Loss and Duplication Handling in Stream
Processing Environment, CINTI 2018, Budapest, Hungary, November 21-22,
2018
DOI:10.1007/978-3-319-65482-9

[8] Hardy, G.H., Ramanujan, S.: Asymptotic Formulae in Combinatory Analysis,
Proceedings of the London Mathematical Society, 1918

[9] Bóna, M.: A Walk Through Combinatorics: An Introduction to Enumeration
and Graph Theory. pp. 145-164, World Scientific Publishing, 2002
ISBN 981-02-4900-4.

[10] Cayley, A.: A Theorem on Trees. Quarterly Journal of Pure and Applied
Mathematics 23, pp. 376-378, 1889

[11] Barvionk, A.: Enumerating Contingency Tables via Random Permanents,
Combinatorics, Probability and Computing, Volume 17, pp. 1-19, 2008
DOI:10.1017/S0963548307008668

[12] Barvinok, A., Luria, A., Samorodnitsky, A., Yong, A.: An approximation al-
gorithm for counting contingency tables, Random Structures Algorithms 37
(2010), no. 1, pp. 25-66, 2010
DOI:10.1002/rsa.20301
arXiv:0803.3948

– 85 –

	Introduction
	Basics of the Interval Merging Binary Tree
	Interval State Space of IMBT
	Traversal Strategy Based Weight Classes
	Bipartite Graphs and Combination Tables on the modeling of IMBT State Space

