Vol. 99 (1901) ACTA PHYSICA POLONICA A No. 5

PRESSURE DEPENDENCE OF THE RAMAN
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We calculated in this study the Raman frequencies of some lattice modes
in the melting region of ammonia solid I. The Raman frequencies of those
phonon modes were obtained through the Griineisen relation using the vol-
ume data for the ammonia solid I from the literature. Our calculated Raman
frequencies require for comparison the experimental Raman frequencies mea-
sured as a function of pressure for some fixed temperatures in the ammonia

solid 1.
PACS numbers: 63.70.4+h

1. Introduction

The solid-liquid phase transition in ammonia has been the subject of interest
for some years. At atmospheric pressure ammonia exhibits a phase transition from
the solid I phase to the liquid phase at Ty, = 192.5 K. This melting temperature
increases as the pressure increases along the melting curve. For the pressures of
above 3 kbar, there occurs another phase transition from the solid II phase to the
liquid phase at the temperatures of above 220 K, along the melting curve. The
first melting curve between solid I and liquid intersects the second melting curve
between solid II and liquid state at the triple point, where the phase line between
solid I and solid 1T arises in the P—7T' phase diagram. The position of this triple
point is Ti_1_m1 = 217.34 K (3.070 kbar). The triple point between gaseous, solid I,
and liquid phases is located at T,_1_; = 195.48 K (P = 0). All these phases have
been shown in the P—T'[1, 2] and V=T [3] phase diagrams in the literature. Apart
from the solid T and solid IT phases, it has been observed experimentally [2] that
there also exists solid IIT (phase IIT) in ammonia at 35 kbar at 25°C.

The ammonia system has been studied as showing the critical transition
near the melting point [4, 5]. Tt has been stated that the ammonia undergoes a
second-order phase transition prior to melting, because of the power-law behaviour
of the isothermal compressibility and thermal expansivity [4, 5]. Very recently, we
have studied the critical behaviour for ammonia solid T and solid IT [6]. We have
then applied the Pippard relations to ammonia solid T and solid 1T [7].

(557)
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In the ammonia solid I there are four translational modes of A, F, and
2F, and five rotational modes of A, F, and 3F, as the zone-centre lattice modes.
They are all Raman active, as pointed out by Nye and Medina [3]. Among those
lattice modes, the A and F modes are due to octupolar interactions according to
the lattice dynamical model assuming atom-atom interactions plus electrostatic
multipole interactions between molecules [8].

In this study we concentrate on the ammonia solid I considering some lat-
tice modes studied in the work of Nye and Medina [3]. We calculate the Raman
frequencies of two translational modes (&~ 100 cm~! and & 130 cm~1!) and of one
librational mode (~ 280 ¢cm~1!) in ammonia solid I, which have been measured
experimentally [3]. The Raman frequencies are calculated as a function of pres-
sure at some fixed temperatures using our volume values calculated in our recent
study [6], which were based on the work of Pruzan et al. [4]. For calculation of
the Raman frequencies we also use the volume data obtained experimentally [3].
Thus, by means of the Gruneisen relation, we have been able to calculate the Ra-
man frequencies as a function of pressure for some fixed temperatures in ammonia
solid I near the melting point.

In Sec. 2 we give the theoretical basis for our calculations. In Sec. 3 we
present our calculations and results for the Raman frequencies. In Secs. 4 and 5
we give discussion and conclusions, respectively.

2. Theory

The thermodynamic functions such as the isothermal compressibility, ther-
mal expansivity, and the specific heat can exhibit the critical behaviour near the
melting point in ammonia.

The critical behaviour of the isothermal compressibility along the pressure
line near the melting point P, in the solid ammonia, can be given by

Ky = k(P — Py)™" (2.1)

as given in the work of Pruzan et al. [4]. Here v is the critical exponent and
k 1s the amplitude. Starting from this power law expression for the isothermal
compressibility k7, we can obtain the pressure dependence of solid volume V; for
the solid ammonia as

Ve=Veexp[—k(l—~)"1(P— Py)'7"]. (2.2)
Here V. represents the critical volume of the solid ammonia along the pressure
line.

The volume dependence of the Raman frequencies can be obtained by means
of the mode Gruneisen parameter defined as

YT = % (g—;)T (2.3)

vr is the 1sothermal mode Grineisen parameter. By knowing the pressure depen-
dence of the volume, we can calculate the Raman frequencies as a function pressure
at fixed temperatures. Therefore, using the data for the solid volume V5 by means
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of Eq. (2.2) we can calculate the frequencies of some Raman modes near the melt-
ing point in ammonia. For this calculation we assume that the isothermal mode
Gruneisen parameter yp remains constant right through the phase transitions.
This assumption has been considered in our earlier studies [9, 10].

In order to solve the Raman frequency as a function of pressure in terms of
the volume, Eq. (2.3) can be written as

11 /0v
e i 2.4
- W(ap)T, (2.4
av :
(t—)T. By taking the

where the isothermal compressibility is defined as kp = % 5P
he Raman frequency

mode Griineisen parameter ypr as constant, from Eq. (2.4)
vr(P) can be obtained as

vr(P) = Ap + A(T) 4+ vy exp[—yr In(Vp(P)/V1)], (2.5)
where the temperature dependent term is
A(T) = ap + Cll(Tl - T) + Clz(Tl - T)2 (26)

In Eq. (2.6) T} is a given temperature, and ag, a1, and as are constants. In Eq. (2.5)
v, and Vj are the values of the Raman frequency and volume, respectively, at the
temperature 7. Ap is the order—disorder contribution to the Raman frequency
near the melting point in ammonia. We take Ap = 0 for P < P. and Ap # 0 for
P > P.. Equation (2.5) has also been introduced in our earlier studies [9, 10].

3. Calculations and results

In this study we first calculated the solid volume V; as a function of pressure
by means of Eq. (2.2). For calculating the critical volume V. in this equation we
used the empirical relation for the ammonia solid 1

Ve(D) = Vi—di(T' = Tg—1-1) (3.1)
as given by Pruzan et al. [4]. In Eq. (3.1) the values of the parameters were taken [4]
as V1 = 21.61 cm3/mol, d; = 0.0316 cm3/(mol-K) and the temperature of the triple

point, T5_1_1 = 195.48 K. This gave us the temperature dependence of the critical
volume for the ammonia solid T as

Vo(T) = 27.79 — 0.0316T. (3.2)

We also used the empirical relation for the melting pressure as given in the work
of Pruzan et al. [4]

Pu(T) = 5.886[ T/ T 1-1)>*%° — 1]. (3.3)

We then determined the values of V.(I) and of Py(I) by means of Egs. (3.2)
and (3.3), respectively, by taking T = T, (P) for various temperatures ranging
from 196 K to 217 K for the ammonia solid I. Table T gives our calculated V,(I)
and Py (T) values. Using the values of the critical exponent v = 0.49 and the
amplitude & = 0.0317 for the ammonia solid T [1], we then obtained the values
of the solid volume V; as a function of the reduced pressure P — Py,. We chose
here the range of the reduced pressure from 0.15 kbar to 1.8 kbar for the ammonia

solid 1.
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In order to calculate the Raman frequencies as a function of the pressure, we
used Eq. (2.5) where we first determined the coefficients ag, a1, and a2 (Eq. (2.6)).
For determining those coefficients we used the measured data of molar volume and
the data of the lattice frequencies for two translational and one librational Raman
modes due to Nye and Medina [3]. Table IT gives the measured Raman frequencies
for two translational modes (& 100 cm~! and & 130 cm~1!) and for the librational
mode (a2 280 cm~!) with the volume data as a function of temperature, which we
used for our analysis.

TABLE 1

Calculated values for the critical volume
Ve (I) and for the melting pressure P (I) by
means of Eqs. (3.2) and (3.3), respectively
for the ammonia solid 1.

T [K] | Ve(I) [em3/mol] | Py(T) [kbar]
196 21.60 0.06
200 21.47 0.56
210 21.15 1.93
215 21.00 2.70
217 20.93 3.02

TABLE 11

The measured Raman frequencies for two translational and one
librational modes with the volume V; data as a function of tem-
perature for the ammonia solid T due to Nye and Medina [4].

T[K]|v[em™] | v[em™] | v [em™1] | Vi(I) [em3/mol]
195.0 98.5 128.4 276.4 20.62
187.6 99.1 129.0 278.2 20.58
180.0 99.6 129.6 279.9 20.55
172.8 100.2 130.2 281.6 20.52

For the translational mode of v &2 100 cm ™' we took the extrapolated values
of v = 98.47 em~! and Vi = 21.61 ¢cm3/mol at 77 = 195.48 K, and the value
of the isothermal mode Griineisen parameter y7 = 2.6 [3]. Using the measured
Raman frequencies (v & 100 cm™!) and the volume data given for four different
temperatures (Table IT), we were able to calculate the coefficients Ap + ag, ay,
and az by means of Eq. (2.5). Those calculated values are given in Table III.

For the translational mode of v &2 130 cm ™' we took the extrapolated values
of vy1 =128.36 cm~! and V; = 21.61 ¢cm3/mol at T; = 195.48 K, and the value of
yr = 2.35 [3]. Similarly, using the measured Raman frequencies (v &~ 130 cm™1)
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TABLE III

Our calculated coefficients A7 + ag, a1, and a2 according to
Eqgs. (2.5) and (2.6) in the ammonia solid I. v; values are those
extrapolated at 71 = 195.48 K and the y7 values were taken
from Nye and Medina [4].

viem™ | vy [em™] | ¢ | Ar+ao | a1/K | a2 x 1073
[em™! | [em™1] | [em™!/K?]
~ 100 98.47 2.6 | —13.3028 | 0.0899 -1.7
~ 130 128.36 | 2.35 | —15.269 | 0.0365 5.8397
~ 280 276.31 0.8 | -10.5316 | 0.125 7.116

and the volume data (Table IT), we calculated Ar+aq, a1, and as through Eq. (2.5).
Our calculated values are given in Table III.

For the librational mode of v a2 280 em ™! we had the extrapolated values
of v1 = 276.31 cm~"! and V; = 21.61 cm3/mol at 71 = 195.48 K, and the value of
vr = 0.8 [3]. In order to calculate the coefficients Ap + ag, a1, and as by means
of Eq. (2.5), we used the measured Raman frequencies (v ~ 280 cm™!) and the
volume data given in Table II. Our calculated coefficients are given in Table III.
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Fig. 1. Our calculated Raman frequencies as a function of the reduced pressure P — P,

where Pr, is the melting pressure, for the translational mode of ammonia solid I for some
fixed temperatures ranging from 196 K up to 217 K. Our calculated frequencies are fitted
to a straight line.
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Fig. 2. Our calculated Raman frequencies as a function of the reduced pressure P — Pp,,
where P, is the melting pressure, for the translational mode of ammonia solid I for some
fixed temperatures ranging from 196 K up to 217 K. Our calculated frequencies are fitted

to a straight line.
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Fig. 3.  Our calculated Raman frequencies as a function of the reduced pressure P — Pp,,
where P, is the melting pressure, for the translational mode of ammonia solid I for some
fixed temperatures ranging from 196 K up to 217 K. Our calculated frequencies are fitted

to a straight line.
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Since we determined all the coefficients we needed, as given in Table III, we
were then able to calculate the Raman frequencies as a function of pressure at some
fixed temperatures by means of Eq. (2.5) for the ammonia solid I. For the frequency
values calculated we used the V; values which we determined through Eq. (2.2).
For those fixed temperatures between 196 K and 217 K our calculated Raman
frequencies as a function of the reduced pressure P — P, for the translational
modes of &2 100 em ™! and ~ 130 cm ™! and for the librational mode of &2 280 cm ™!,
are plotted in Figs. 1-3, respectively.

4. Discussion

We calculated in this study the Raman frequencies as a function of pressure
for two translational modes and one librational mode of ammonia solid I. As seen
from Figs. 1-3, the Raman frequencies increase as a function of pressure, as the
temperature increases from 196 K up to 217 K for the translational modes of
~ 100 cm~! and ~ 130 cm™! (Figs. 1 and 2) and also for the librational mode of
~ 280 cm~! (Fig. 3). This is consistent with the decrease in the solid volume Vj
as a function of pressure; as the temperature increases from 196 K up to 217 K.
This can also be seen partly for those values of the solid volume V,(I) and for the
values of the critical volume V,(I), as given in Tables T and II, respectively.

In calculating the Raman frequencies for the phonon modes considered here
we assumed that the isothermal mode Grineisen parameter remained constant
across the melting region in the ammonia solid I. We took the average values
of yv = 2.6 and yp = 2.35 for the translational modes of ~ 100 cm™! and
~ 130 em™1, respectively, as given in the work of Nye and Medina [3]. Those values
of yp are close to each other, which were determined between 172.8 K and 195 K [3].
They can also be compared with our values of 2.5 for v5 (174 em~!) Raman mode
of NH4Cl [9] and of 1.59 for the v5 (134 cm~!) Raman mode of NH4Br [11]. This
indicates that regarding the values of the isothermal mode Grineisen parameters,
the phase transition of the ammonia solid I to the liquid state can be classified
as the A-type phase transition that the ammonium halides exhibit. On the other
hand, the value of 7 = 0.8 for the librational mode of & 280 cm~! is small as
compared to those values for two translational modes in ammonia solid I, as also
pointed out in the work of Nye and Medina [3].

In order to compare our Raman frequencies calculated as a function of the
pressure for the translational modes of &~ 100 cm~! and ~ 130 em~! and also for
the librational mode of &~ 280 cm ™!, we require the observed Raman frequencies
measured as a function of pressure for the phonon modes considered in ammonia
solid I. In particular, the Raman frequencies are needed at various reduced pres-
sures ranging from 0.15 kbar to 1.8 kbar for fixed temperatures of 196 K up to
217 K in the melting region of the ammonia solid I.

5. Conclusions

We calculated here the Raman frequencies of two translational modes and
one librational mode at various pressures near the melting point for some fixed
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temperatures in the ammonia solid I. This calculation was performed by means
of the Griineisen relation using the volume data from the literature. Our calcu-
lated frequencies shift systematically as the temperature increases, as expected.
The validity of our method for calculating the Raman frequencies requires the
experimental measurements for the Raman frequencies as a function of pressure
at fixed temperatures of the phonon modes studied here in the ammonia solid 1.
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