Vol. 137 (2020)

ACTA PHYSICA POLONICA A

No. 4

Special issue: ICCESEN-2019

3D Electromagnetic Positioning Optimization
by Means of Deep Learning

H. CARK®*, B. BORU” AND A. YAHYA TESNELI®
@Sakarya University of Applied Science, Graduate Education Institute, Sakarya, Turkey
bSakarya University of Applied Science, Department of Mechatronics Engineering, Sakarya, Turkey

¢Sakarya University, Department of Electrical and Electronics Engineering Sakarya, Turkey

The 3D electromagnetic positioning system consists of four generating coils and three-axis magnetic sensor,
accelerometer, and gyroscope in magnetic field. These systems are generally used in navigation, ballistic missile
tracking, medicine, robotics, biomechanics, and education. Electromagnetic positioning can be performed in a
limited volume. In addition, there are errors in the position calculation. In this study, the aim is to increase the
coverage volume and to minimize the errors in the sensor position. Therefore, large radius coil, high circuit current,
and high number turn of coil were used to increase the working volume. By optimizing, the sensor was moved
closest to the actual position. In order to reduce these errors different software and algorithms were used. Some of
them are Levenberg—Marquardt, artificial neural networks, etc. In this study, deep learning algorithms, which are
a more advanced version of machine learning concept, are used. Deep networks can be thought of as a special case
of multi-layered classical artificial neural networks. Mean square error (MSE) was used for performance analysis

of the system.
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1. Introduction

The 3D electromagnetic positioning study was carried
out for the 3D digitizer and tracking design. Most of the
electromagnetic tracking techniques are based on accu-
rate mapping of a 3D magnetic field around generating
coils and computing from the field mapped by the sensor
position and orientation relative to the source [1]. The
operating volume of these systems is directly related to
the current supplying transmitter coils, the number of
spirals of the coils, the external radius, and the sensitiv-
ity of the receiver. In the study, firstly, large radius coil,
high circuit current, and high number turn of coil were
used to increase the working volume. Then, reducing po-
sition errors were aimed. It has been optimized to reduce
these errors. Deep learning algorithm is used for position
optimization. The mean square error (MSE) values were
analysed for performance.

2. Materials and methods

In order to test the position information of the 3D
positioning, the layout of the coils in the XY plane is
shown in Fig. 1. The distance between the centres of the
transmitting coils in the layout plane was d = 68 cm.
In order to increase the operating volume of the system,
the outer radius of the transmitter coils was large, the
number of spirals was sufficient, and the coil is operated
with a high current. There were 243 positions determined
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Fig. 1. Layout of transmitter coils in X—Y plane.

for measurement. 81 of the 243 position data obtained
were used for training in deep learning algorithm. The
positions obtained were calculated according to the point
A shown in Fig. 1. The gyroscope and accelerometer were
used to determine the pitch and roll angle of the sensor.
Coordinate calculations must be made when the sensor
transmitter is parallel to the coils.

2.1. Position parameter and calculation

The formula for magnetic dipole moment coefficient %
is the following:
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where I — current feeding the coil, N — spiral num-

ber of the transmitter coil, R — external radius of the
transmitter coil, uy — magnetic permeability of the gap.
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The positioning formulae are given below [2]:
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2.2. Deep learning

Deep learning can be defined as artificial neural net-
works that contain multiple hidden layers. Unlike basic
machine learning approaches, they contain more neurons.
They consist of a hierarchically more complex structure
than artificial neural networks. Deep learning algorithms
consume more power during the training phase [3]. In
the use of machine learning techniques, the feature vec-
tor must be extracted first. In order to extract the fea-
ture vector, experts skilled in the art are needed. These
processes take a lot of time involving the expert. For
this reason, machine learning techniques cannot process
raw data. In contrast to these techniques, deep net-
works perform learning on raw data. It obtains the neces-
sary information in different layers while processing raw
data [4]. Deep learning methods have achieved great suc-
cess in many areas such as finance, health, linguistics
and robotics. Modern computer hardware makes it pos-
sible to train very large deep neural networks of high
dimensions [5].

3. Experimental results

In this study, 243 measurements were made in the
range of 18-50 cm and the error values between the real
places and the measured places were determined. The

Optimization methods comparison table. TABLE I
MSE Duration Avg. axis
. errors [mm)|
value | of training
X Y Z
M
casurement 0.4523 - 3.66 | 3.45 | 9.33
results
ANN (trainb
(trainbr, 03779 | 115s | 291 | 264|671
cascadeforwardnet)
Deep learning 0.2191 | 44 min 35 s | 3.25 | 3.91 | 4.06

Literature comparison table TABLE II

Studies Axis errors
i1 the literature Distance [cm]| | (average error) [mm)]
XY | z
Z. Zhang
and G. Liu [6] 10 24
M.N. Islam
11. 4. 2.4 .
and A.J. Fleming [7] 7 8 8.8
M.N. Islam
25. 2 2. 12
and A.J. Fleming [7] 5 3 7
X. Guo et al. [§] 30 8-24|11-23| 9-26
C. Du et al. [9] 30 x 30 6.37
C. Du et al. [9)] 15 x 30 2.60
In this study 32 x 32
3.25| 3.91 4.06
(deep learning) (18-50)

MSE values were obtained from the measurement results
according to the actual positions. Then, artificial neural
networks were applied. The best performance was ob-
served in the cascadeforwardnet NN, which was trained
by trainbr. Finally, the deep learning algorithm was ap-
plied. According to the measurement results, the MSE
value was 0.4523, as shown in Table I, and the MSE value
was 0.3779 after the trainbr trained cascadeforwardnet
NN was applied. According to the results of deep learn-
ing, the value of MSE was 0.2191 and average axis er-
ror were 3.24 mm for X-axis, 3.91 mm for Y-axis, and
4.05 mm for Z-axis, as shown in Table I. The duration
of training of these algorithms is shown in Table I.

4. Conclusions

The 3D electromagnetic positioning systems are gener-
ally used in fields such as 3D digitizer, tracking, naviga-
tion, biomechanics, robotics, etc. Electromagnetic posi-
tioning can be performed in a limited volume. The study
was conducted in a range of X= 18-50 cm, Y= 18-50 cm,
and Z= 2.4-6 cm. The outer radius of the transmitter
coil was 11.37 cm. The magnetic field in the 11.37-18 cm
range was very high. This high magnetic field was above
the sensor’s measuring range. Therefore, no measure-
ment was made at this distance. Since the magnetic field
weakened, the required measurement could not be per-
formed at a distance of more than 50 cm.
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There are different studies in the literature in the range
of 10-30 cm, as shown in Table II. These studies were
either performed at very short distances or the axis errors
were high. The coverage of this study was wider than all
the studies given in Table II and decrease in the axis
errors was observed.
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