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In this paper, the time-dependent cylindrical Korteweg-de Vries–Burgers equation has been derived using

hydrodynamic equations with the Poisson equation for nonextensive ultracold neutral plasmas containing ions and
nonextensive electrons, various kinds of analytical solutions have been obtained for cylindrical Korteweg-de Vries–
Burgers equation using extended homogeneous balance method. Numerical analysis for the nonlinear shock wave
solution revealed that its profile is significantly affected by nonextensive and the ion temperature. This theoretical
study could provide a better frame-idea about the laboratory plasma systems as observed in the space for the
astrophysical compact objects. This study also shows that further deep investigations are needed in future for
better understanding of the nonlinear wave propagation for astrophysical compact objects in space.
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1. Introduction

Plasma, a quasi-neutral gas of charged and neutral
particles, exhibits collective behavior being ionized [1].
Thus the substances in plasmas become highly electri-
cally conductive to the point that long-range electric field
dominates the behavior of the matter [2]. Basically, in
turn, this governs collective behavior with many degrees
of variation [1, 2]. However, plasma is rare on the Earth
surface under normal conditions and is mostly artificially
generated from neutral gases [3], but in this universe 99%
are in plasma state [1–4]. Thus it is interesting and im-
portant to know the plasma conditions for the laboratory
to understand the environmental conditions in space.

In the previous work [5], a fluid model for ions (both
positively and negatively charged), electrons (with elec-
tron degenerate pressure), and stationary dust was con-
sidered and further modified Korteweg-de Vries (KdV)
equation (fmKdV) was derived following reductive per-
turbation technique [6–9]. The investigation was done
to study the small but finite amplitude for dust-ion-
acoustic shock waves using “G′/G” method to obtain
a new class of solutions [6–11]. Another study [12] de-
rived extended homogeneous balance method [13, 14]
obtaining the exact traveling wave solutions for KdV
equation [15, 16]. This model discussed both small am-
plitude and the Sagdeev potentials for large amplitude
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in nonlinear wave structures for the plasma systems con-
taining both superthermal electrons and ions with kappa
distribution and heavy dust particles which are nega-
tively charged. Very recently, a dusty plasma model
containing negatively charged dust particles, isothermal
electrons, and two-temperature isothermal ions has been
considered. The extended tanh method (ETM) is used
to solve the reduced nonlinear ordinary differential equa-
tion from the fmKdV equation deriving KdV equation
with a nonlinear wave solution providing shock wave
characteristics [6–11, 15, 16].

Recently, non-extensive distribution has got the atten-
tion in plasma systems for its unique and different charac-
teristics. Basically, the non-extensive statistics or Tsallis
statistics is based on the derivation of the Boltzmann–
Gibbs–Shannon (BGS) entropic measurement and is
only studied in such plasma conditions/cases where the
Maxwell distribution is considered inappropriate [17].
This entropic index is symbolized with q which character-
izes the degree of non-extensivity of the considered sys-
tem. The parameter q has been classified into three cat-
egories where (i) q < 1 means superextensivity, (ii) q > 1
means subextensivity, and (iii) q < −1 means that the
q distribution is unnormalizable. It is important to note
here that in the extensive limiting case (q → 1), the q dis-
tribution reduces to the well-known Maxwell–Boltzmann
velocity distribution [18–24]. The non-extensive distri-
bution for any plasma species is given by

ne = [1 + (q − 1)ψ]
1+q

2(q−1) , (1)
where q is the nonextensive parameter characterizing the
degree of nonextensivity.
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In weakly non-ideal plasmas, like the solar interior,
both nonextensivity and quantum uncertainty are found
into account to derive equilibrium ion distribution func-
tions and to estimate nuclear reaction rates and solar
neutrino uses [25]. Later, particles with statistical be-
havior as non-extensive distribution were studied in the
early stage of heavy-ion collisions [26] and high-energy
collisions [27]. Thus, we are interested to study the time-
dependent (nonplanar [28]) nonlinear propagation for
an ultracold neutral (UCN) plasma system considering
q-nonextensive distribution in nonplanar cylindrical ge-
ometry because the ion-acoustic wave has been identified
in the UCN plasma but in the absence of q-nonextensive
distribution of electrons [29]. Thus this study could influ-
ence the future plasma experiment to observe such non-
linear dynamics.

We introduce the considered model, model equa-
tions, and methods to solve the problem in Sect. 2.
The steps for the solutions of cylindrical Korteweg-de
Vries–Burgers (cKdV–Burgers) equation are discussed in
Sect. 3. Finally, a broad numerical analysis and ending
discussion are presented in Sects. 4 and 5.

2. Model and method

Let us consider collisionless, unmagnetized, coupled
plasma consisting of ion-fluids and electrons with q-
nonextensive distribution. The normalized basic fluid
equations of such plasma are governed by the equations
of continuity and the generalized viscoelastic ion momen-
tum equation, which are, respectively, given by following
the time-dependent cKdV–Burgers equation [28]:
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and Poisson’s equation

−6mm 1

rα
∂

∂r

(
rα
∂φ

∂r

)
= 4πe(ne − ni), (4)

where α = 0 for one-dimensional geometry and α = 1
and α = 2 for cylindrical and spherical geometry, re-
spectively [29]. In Eqs. (2)–(4), ni, ui, ne, and φ are
the ion number density, the ion fluid radial velocity, the
electron number density and the wave potential, respec-
tively, and t (r) is time (space) variable. Furthermore,
we have denoted Dτ = 1+τm∂t, Dt = ∂t+ui∂r, τm is the
viscoelastic relaxation time, Zi — the ion charge state,
e — the magnitude of the electron charge, mi — the ion
mass, Tf — the effective ion temperature arising from the
electrostatic interaction among strongly correlated posi-
tive ions, kB — the Boltzmann constant, η and ν are the
bulk and shear viscosity coefficients, respectively [29].

We use a q-nonextensive distribution for electrons
which were given in Eq. (1). To study cylindrical

solitary waves in a strongly coupled UCN plasma [de-
scribed by Eqs. (1)–(4)] by the reductive perturba-
tion technique [10], we first re-scale the stretched
coordinates [30]:{

X = −ε1/2(r + λpt),

T = ε3/2t,
, (5)

where ε is a smallness parameter measuring the weak-
ness of the dispersion and nonlinearity, and λp is the
phase speed of the ion-acoustic shock waves, which ex-
pands the variables ni, ui, and φ about their equilibrium
values in the power series of ε, viz.

ni = ni0 + εn
(1)
i + ε2n

(2)
i + . . . ,

ui = εu
(1)
i + ε2u

(2)
i + . . . ,

φ = εφ(1) + ε2φ(2) + . . . ,

(6)

and develop equations in various powers of ε. To the low-
est order in ε, one obtains the first-order ion continuity
equation, ion momentum equation, and Poisson’s equa-
tion, which give

n
(1)
i = −ni0

λp
u
(1)
i = − Zieni0

kBTf −miλ2p
φ(1), (7)

λp =

[
1

mi

(
Tf +

2ZikBTe
1 + q

)]1/2
. (8)

Equation (8) describes the phase speed for the ion-
acoustic shock wave propagating in UCN plasmas with a
q-nonextensive electron distribution function.

To the next higher order in ε, we obtain a set of
coupled equations for n(2)i , u(2)i , and φ(2), which could
be reduced to the cKdV–Burger equation
∂φ(1)

∂T
+Aφ(1)

∂φ(1)

∂X
+

1

2T
φ(1) +B

∂3φ(1)

∂X3
= E

∂2φ(1)

∂X2
,

(9)
where

B =
(Tf − λ2mi)

2

2λpmiZieni0
, (10)

E =
η0

2mini0
, (11)

where we have assumed that the longitudinal viscosity
coefficient η = ε1/2η0 and the nonlinear coefficient A is

−0.2cmA =
Zie

2miλp

[
1− 3 + 2q − q2

(1 + q)2

]
. (12)

3. cKdV–Burger equation solutions

Using extended homogeneous balance method
(see [12]) we find various solutions for the cylindrical
Korteweg-de Vries–Burgers equation. Let us first use
the transformation

φ(1) =
u

T
+
X

2T
(13)

and
ξ = XT−1/2τ = −2T−1/2. (14)
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Finally, we get the KdV–Burger equation
uτ +Auuξ +Buξξξ − Euξξ = 0. (15)

Then we apply the transformation as follows:
u(ξτ) = U(ζ), ζ = ξ − λτ to Eq. (15).

Then it is reduced to the following ordinary differential
equation:
−λU ′ +AUU ′ +BU ′′′ − EU ′′ = 0. (16)

Integrating Eq. (16) with respect to ζ once, we get

−λU +
A

2
U2 − EU ′ +BU ′′ = 0. (17)

Balancing U
′′
with U2 yields m = 2. Therefore, we are

looking for the solution in the form
U = a0 + b0 + a1ω + b1(1 + ω)−1 + a2ω

2 + b2(1 + ω)−2

(18)
and

ω′ = k +Mω + Pω2, (19)
where ai and bi are constants, while k, M and P are
parameters to be determined later, ω = ω(ζ), and
ω′ = dω/dζ.

Substituting Eqs. (18) and (19) in Eq. (17), we get a
polynomial equation ω. Hence, equating the coefficient of
ωj (i.e., j = 0, 1, 2,. . . ) to zero and solving the obtained
system of overdetermined algebraic equation using sym-
bolic manipulation package MATHEMATICA, results:

The first set

k =
−E2

4PB2
a1 = 0, a2 = 0, a0 =

3E2

5AB
,

b1 = − 12

5A

(
Ek − EM + 5BkM − 5BM2 + EP

−10BkP + 15BMP − 10BP 2
)
,

b2 = −12

A

(
Bk2 − 2BkM +BM2 + 2BkP

−2BMP +BP 2
)
,

λ =
1

5
(6EM − 12EP + 60BkP − 60BMP

+60BP 2 + 5Aa0
)
. (20)

The second set

k =
E2 + 25B2M2

4B2P
, a1 =

12(EP − 5BMP )

5A
,

b1 = 0, a2 = −12BP 2

A
, b2 = 0, a0 =

3E2

5AB
,

λ =
1

5
(−6EM + 60BkP + 5Aa0) . (21)

For the first set, Eq. (20), if M = 0, P = 1, we get the
solutions satisfying case I.

For k > 0, the solutions of KdV–Burgers equation,
Eq. (15), will be

u1(xt) = a0 +
12E
√
k tan

(√
kζ
)

5A
−

12Bk tan
(√

kζ
)2

5A
,

(22)

u2(xt) = a0 +
12E
√
k cot

(√
kζ
)

5A
−

12Bk cot
(√

kζ
)2

5A
.

(23)
For k < 0,

u3(xt) = a0 −
12E
√
−k tanh

(√
−kζ

)
5A

+
12Bk tanh

(√
−kζ

)2
5A

, (24)

u4(xt) = a0 −
12E
√
k coth

(√
kζ
)

5A

+
60Bk coth

(√
kζ
)2

5A
. (25)

Now for the solutions satisfying cases II and III and IV,
we have the compatibility condition

Pk =
M2 − p21

4
. (26)

Therefore, substitute for P and k, from Eq. (20) into
Eq. (25) and solve for p1. It is found that

p1 =
E

5B
. (27)

Hence, for case II, we get the following solutions:

u5(xt) = a0 +
12p1 tanh (ζp1) (E + 5Bp1 tanh (ζp1))

5A
(28)

and

u6(xt) = a0 +
12 coth (ζp1) p1 (E + 5B coth (ζp1) p1)

5A
.

(29)
In the same manner case III, results in the solution

u7(xt) = a0 −
6E
(√
−1 + r2 + sinh(ζ)

)
5A(r + cosh(ζ))

−
3B
(√
−1 + r2 + sinh(ζ)

)2
A(r + cosh(ζ))2

(30)

with the condition that p1 = 1.
For case IV, the solution form is

u8(xt) = a0 −
48B

A(2 + coth(ζ) + csch(ζ))2

− 24(−10B + E)

5A(2 + coth(ζ) + csch(ζ))
, (31)

with the condition that p1 = 1.

u9(xt) = a0 +
3coth

(
ζ
2

)(
2E − 5Bcoth

(
ζ
2

))
5A

(32)

with the condition that p1 = 2.
For the second set, if M = 0, P = 1, we get the solu-

tions satisfying case I.
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For k > 0, the solutions of KdV–Burgers equation for
Eq. (15) will be

u10(xt) = a0 −
12B(1 + k)2

A
(
1 +
√
k tan
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kζ
))2

− 12(−10B + E)(1 + k)

5
(
A+A

√
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)) , (33)
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For k < 0,

u12(xt) = a0 +
12B(1 + k)2

A
(
−1 +

√
−k tanh
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−kζ

))2
+
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(
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√
−k tanh
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u13(xt) = a0 −
12B(1 + k)2

A
(
−1 +

√
kcoth

(√
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))2

+
12(−10B + E)(1 + k)

5A
(
−1 +

√
kcoth

(√
kζ
)) . (36)

Now, we left with solutions satisfying cases II and III and
IV, since the main criteria for these cases to be applicable
is the compatibility condition

Pk =
M2 − p21

4
. (37)

From Eq. (50), it is found that

p1 =
β

5α
(38)

Therefore, solutions to equation for the type of Eq. (15),
will be

u14(xt) =

a0 −
12 (5B − E + (−10B + E)p1 tanh (ζp1))

5A (−1 + p1 tanh (ζp1))
2 (39)

and
u15(xt) =

a0 −
12 (5B − E + (−10B + E)coth (ζp1) p1)

5A (−1 + coth (ζp1) p1)
2 . (40)

In the same manner, case III results in the solution
u16(xt) =

a0 −
24(−10B + E)(r + cosh(ζ))

5A
(
−2r +

√
−1 + r2 − 2 cosh(ζ) + sinh(ζ)

)
− 12B

A
(
1−

√
−1+r2+sinh(ζ)
2(r+cosh(ζ))

)2 , (41)

where p1 = 1.

For case IV, the solution form is

u17(xt) = a0 −
48B

A(2 + coth(ζ) + csch(ζ))2

− 24(−10B + E)

5A(2 + coth(ζ) + csch(ζ))
(42)

with p1 = 1.

u18(xt) = a0 +
12(5B − E + (−10B + E)coth(ζ))

5A(−1 + coth(ζ))2
(43)

with the condition that p1 = 2.
The extended HB method is applied to give the trav-

eling wave solutions for the cKdV–Burger equation. The
obtained solutions cover many types like periodical, ra-
tional, solitary and shock wave solutions like Eqs. (22),
(24), and (30), some of them cannot be recovered using
methods like tanh-method, the extended tanh method,
the G′/G method method, etc. [6–12, 15, 16, 18]. To
investigate the nonlinear properties of solitary waves we
can study the soliton solution, Eq. (30) and the shock
wave solution, Eq. (24). From the solution of Eq. (30),
we can express the solution in the following form:

φ1 =
ζ

2AT
+

3u7
AT

, (44)

which is a soliton solution as plotted in Fig. 1. The shock
wave solution can be expressed from Eq. (24) as

φ1 =
ζ

2AT
+

3a0
AT

(sech2
(√
−kζ

)
± tanh

(√
−kζ

)
).

(45)

4. Analysis

From Fig. 1 we can see that in the initial period the
nonlinear wave structure shows a soliton wave character-
istics with a nonlinear increasing and decreasing shape
with respect to position. But with the increase of the
time, the nonlinear wave structure is going to flat after a
sudden increase in the profile where the decreasing rate is
really slower than the increasing rate, not shock structure
but tends to be nonlinear shock wave structure. This re-
sult makes the significance of this work that time plays
an important role in this model where electrons are taken
with q-nonextensive distribution.

Fig. 1. 3D plot of the soliton solution, Eq. (30).
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Fig. 2. Shock wave profile, Eq. (24), for different values
of Tf = 300 (solid curve), Tf = 450 (dotted curve), and
Tf = 600 (dashed curve).

Fig. 3. Shock wave profile from Eq. (24) for different
values of q = 0.01 (solid curve), q = 0.3 (dotted curve),
and q = 0.9 (dashed curve).

In the next figure, Fig. 2, we show how the viscosity
coefficient (η) in the fluid changes when the temperature
is changing. At low temperature (solid line in Fig. 2),
the viscosity coefficient does not change at the beginning
but makes a sudden big jump with a high increasing rate
and a comparatively low peak, and then moves with a
constant rate as no change in η. Note here that chang-
ing position also refers that change in time; i.e., with-
out changing the time it is not possible to refer to two
continuous positions. For the next high value of Tf , η
starts to increase slowly and then moves as a constant
with position providing a perfect nonlinear shock wave
profile (dotted curve in Fig. 2). But at high tempera-
ture (dashed curve), the change in the nonlinear wave
profile also provides a shock structure but the change in
the viscosity coefficient (η) is not so significant like other
cases as shown in Fig. 2. This phenomenon indicates that
temperature also has a great effect on the q-nonextensive
of the UCN plasma containing q-nonextensive electrons.
Now, we are interested to see what happens if the value
of q changes where Tf is fixed. We observe a different
and interesting phenomenon at the same time.

When q is 0.01 then the nonlinear profile is perfect
shock structure with the increasing value of η shown in
Fig. 3 with a solid curve. With the dotted curve in Fig. 3,
we see the large shock wave profile when q = 0.3 in our
considered model and model parameters (given in cap-
tion) and there is a big increasing change in the shock
profile. When we take q close to 1 (q = 0.9) we see that
the wave profile starts with the highest value of η com-
paring the other two waves. The wave structure starts
increasing with a low rate (changes occur slowly) where
the constant rate (after the increase) in profile shows
the lowest value of η. This means that when q is equal
to 1, (q → 1), the q distribution reduces to the well-
known Maxwell–Boltzmann velocity distribution. From
this view, it looks that our model analysis does agree
with well established theory and previous works.

5. Conclusion

In this study, we consider a simple UCN a system
containing collisionless, unmagnetized, coupled plasma
consisting of ion-fluids and electrons with q-nonextensive
distribution. We have derived cKdV–Burgers equation
using extended homogeneous balance method using both
the standard perturbation method and stretching coordi-
nates. From the nonlinear ion-acoustic (IA) shock wave
solution we have plotted three simple figures as Figs. 1–3.

Ultracold neutral plasmas formed by photoionizing
laser-cooled atoms near the ionization threshold have
electron temperatures in the 1–1000 K range and ion tem-
peratures from tens of millikelvin to a few kelvin [31].
The results of this study are expected to contribute to
the understanding of the nonlinear potential excitations
that may appear in the laboratory UCN plasma exper-
iments. The main applications of the UCN plasma are
industrial applications, such as in the lighting technolo-
gies, plasma processing, and the pursuit for fusion en-
ergy. Laboratory works needs lots of preparation for
environmental and health-safety issues. Experimental
works are always expensive for all branches of science.
We are all in the point that we need an established the-
ory and some pre-assumption before moving to the ex-
perimental/laboratory works to make it successful. So
we develop a model considering some previous works
from theory and experiments. It is interesting to un-
derstand the effects of q and Tf in space as found in
many kinds of plasma environments like the solar wind,
the Earths magnetospheric plasma sheet, Jupiter, Sat-
urn, supernovae shells (where the condition for soliton
formation is well satisfied) [32–36].

On the other hand, in the astrophysical environments,
like space, the Reynolds numbers and the initially lam-
inar configurations can transit to turbulence, which is
important and needs to be considered for any theory of
magnetic reconnection [37–40]. These authors made a
brief discussion about the flares predicted by turbulent
reconnection and relate them to solar flares and gamma
ray bursts following the process of tearing reconnection
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should transfer to turbulent reconnection including so-
lar observations, measurements in the solar wind or he-
liospheric current sheet, and show their correspondence
with turbulent reconnection predictions. Following this,
it is important to note here that the turbulent recon-
nection has been found to play an important role in
explaining various astrophysical problems [41–43]. As
we cannot directly work with real compact objects in
space [39, 40, 42, 43], thus it is the time to add magnetic
field in the plasma systems modeling to study more about
the dynamics of the the turbulent reconnection processes
in the astrophysical environments.

To conclude, it may be pointed out that the results of
this studies could be useful for understanding some non-
linear behaviors of dust acoustic and dust-ion acoustic
waves in different regions, where the strong/weak mag-
netic field is present [44, 45], as well as other physical
phenomena like a condensation of rogue and double lay-
ers [46], where dust grains are also reported to be found
in the laboratory as well as in space and astrophysical
environments [47–50]. In some cases, quantum plasmas
are also considered for the polarity effect [51] and both
positively and negative charged ions [52, 53]. In these
works, authors directly and indirectly suggested to make
a deep investigation/study about the effects of magnetic
fields in space. Thus, the astrophysical objects are some-
how got involved with the space condition having plasmas
(with/without dust particles).

As this theoretical study is limited from lots of facts
and factors, however, we have made such a simple model
with some condition of dust particles and q distribution
for the nonplanar geometry case. In the environment of
compact cosmic sources, such as the astrophysical jets
launched from the black holes or neutron stars, the ef-
fects of strong magnetic field are very important. Thus, a
deep investigation with more critical conditions is needed
in the future studies to know more details. The non-
resonant acceleration of particles in magnetic turbulences
is widely discussed in astrophysical context, in order to
explain the non-thermal emission spectra of the gamma
ray bursts and a quasi-blackbody spectrum depending
on the acceleration mechanism “thermal or magnetic“
of the flow [54, 55].
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