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A Taylor expansion of dipole–dipole interaction in 2D systems defines a Landau-like local dipolar interaction
in spin derivative field. The lowest order of this interaction gives the dipolar anisotropy. The next non-zero order
is responsible for the appearance of magnetic vortices and hyperbolic defects. The following non-zero orders
indicate the occurrence of higher topological defects such as double circle and of modulations. The arrangement
of self-screened topological defects is discussed in agreement with the Monte Carlo simulations and experimental
observations. Excited localized modes associated with these defects are classified.
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1. Introduction

Recently, the improvement of resolution of 2D mag-
netic structures enabled several authors to observe vor-
tices and other topological defects in magnetic dots with
weak anisotropy [1–5]. This is in agreement with the
numerical observation of vortex stability in 2D samples
with dipole–dipole interaction by the Monte Carlo tech-
niques [6], as well as by micromagnetic computations
[7–9]. It must be added that the geometrical arrange-
ment of vortices on 2D lattices naturally requires the oc-
currence of other competing topological defects. Quite
similarly improved resolution in resonance techniques en-
abled people to observe magnetic vortex resonance [10].
Therefore, the purpose of a natural classification of topo-
logical defects in 2D quantum dots and of their excitation
modes from the very nature of dipole–dipole interaction,
which is the goal of this paper, just arises. The idea
behind such a tentative classification is just a Taylor–
Maclaurin series expansion of dipolar interactions which
enables us to define a Landau-like local version of the
Hamiltonian as a function of the spin field and its deriva-
tives. So, the ground state determination is achieved
by optimizing these different contributions. This de-
fines classified structures which are topological defects
and further this Hamiltonian enables us to classify their
excitations. Moreover, in presence of strong perpendicu-
lar anisotropy, this calculation explains the occurrence of
observed labyrinthine domains in 2D dots [11] and gives
other evidence for the trace of topological defects. Quite
similarly this calculation suggests a normal classification
of excitations in labyrinthine structures.
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2. Local picture of dipolar interaction

The usual dipolar Hamiltonian reads [12]:

Hd =
∑

i,j 6=i

Si · Si

r3
ij

− 3
∑

i,j 6=i

(Si · rij) (Si · rij)
r5
ij

. (1)

Here a part of a discrete triangular or square 2D lattice
of spins Si located at sites i of coordinates (xi, yi) fills
the dot with the running vector rij linking sites i and j.
The Taylor expansion of the lattice spin field at site j
reads as a function of the spin field at site i and of its
partial derivatives

Sj =
∞,∞∑
p,q=0

xp
ijy

q
ij

p!q!

(
∂p+qSi

∂xp∂yq

)
. (2)

Using this expansion, two kinds of lattice sums appear
in Eq. (1), namely the isotropic sum Ip,q and the
anisotropic sum Jp,q,α,β with

Ip,q =
∑

j

′ xp
ijy

q
ij

p!q!
(
x2

ij + y2
ij

)3/2

and

Jp,q,α,β =
∑

j

′ (rij)α(rij)βxp
ijy

q
ij

p!q!
(
x2

ij + y2
ij

)5/2
. (3)

These lattice sums depend up to some extent on lattice
symmetry [13], and some of them do not converge
for an infinite lattice without damping of the dipolar
interaction. Therefore, the local dipolar Hamiltonian
reads as a sum of local Hamiltonians up to a corrective
term

HD =
∑

i

Hd,i, (4)

where
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Hd,i =
∞,∞∑
p,q=0

Si ·
(

∂p+qSi

∂xp∂yq

)
Ip,q

−3
∞,∞∑
p,q=0

(Si)α

(
∂p+q (Si)β

∂xp∂yq

)
Jp,q,α,β .

3. Ground state determination

The lowest order term of Eq. (5) is responsible for lat-
tice induced anisotropy [13]. The next non-zero terms
are even terms because of symmetry. The first of these
terms reads

H2

C
= −5Sx

∂2Sx

∂x2
+ 3Sy

∂2Sy

∂x2
+ 3Sx

∂2Sx

∂y2

−5Sy
∂2Sy

∂y2
− 6Sx

∂2Sy

∂x∂y
− 6Sy

∂2Sx

∂x∂y
. (5)

This is already a non-linear term. The next non-zero
term is also non-linear and reads

H4

C ′
= −9Sx

∂4Sx

∂x4
+ 3Sy

∂4Sy

∂x4
− 6Sx

∂4Sx

∂x2∂y2

−6Sy
∂4Sy

∂x2∂y2
+ 3Sx

∂4Sx

∂y4
− 9Sy

∂4Sy

∂y4

−12Sx

(
∂4Sy

∂x3∂y
+

∂4Sy

∂y3∂x

)

−12Sx

(
∂4Sx

∂x3∂y
+

∂4Sx

∂y3∂x

)
. (6)

Here C and C ′ are positive constants. For a basically
in-plane spin S = (cos θ, sin θ, 0) as observed in exper-
iments [1–5] and in numerical simulations [6–9], these
contributions become respectively

H2 ≈ 4 sin 2θ
(
θx2 − θy2

)− 6 cos 2θθxy + θ2
x + θ2

x

+6 sin 2θθxθy + 4 cos 2θ
(
θ2

x − θ2
x

)

and
H4 ≈ 2 sin 2θ[θx4 − θy4 + 2(θx3θy + θy4θx)

+4θxy(3θx2 + 3θy2 − 2θxθy) + 6(θx2y + θy2x)

+6(θx2θ2
x − θy2θ2

y)− 2θxθy(θ2
x + θ2

y)

−4 cos 2θ(θx3y + θxy3)

+(4 cos2 θ − 1)(4θx3θx + 3θ2
x2 − θ4

x)

+(4 sin2 θ − 1)(4θy3θy + 3θ2
y2 − θ4

y)

+4(θx2yθy + θxy2θx) + 2θx2θy2 + 4θ2
xy

−12θxy(θx2 + θy2)− 12θxθy(θx2 + θy2)− 2θ2
xθ2

y. (7)
These equations are local, but strongly non-linear.

Then it is convenient to search for optimal structures
in polar coordinates θ(r, ϕ) [14], and more specifically to
look at vortex-like solutions which do not depend on the
radial distance. Therefore, the previous contributions
read now

H2

A2,0
≈ θ2

ϕ

2r2
[2− cos(2(ϕ + θ))− 7 cos(2(ϕ− θ))] (8)

and
H4

A4,0
r4 ≈ θϕ[−6 cos(2(θ − ϕ))− 2 cos(2(θ + ϕ))]

+θ2
ϕ[13 + 46 cos(2(θ − ϕ)) + 26 cos(2(θ + ϕ))

+11 cos(4ϕ)] + θ3
ϕ[16 cos(2(θ − ϕ))− 6 cos(2(θ + ϕ))

− cos(4ϕ− 2θ) + cos(4ϕ + 2θ) + 12 cos(2ϕ)]

+θ4
ϕ[1 + cos(2(θ − ϕ))− cos(2(θ + ϕ))− 1.5 sin2(2ϕ)

−(sin4 ϕ cos2 θ + cos4 ϕ sin2 θ)]. (9)
Tentative ground state solutions must optimize these
contributions and their energy is compared with the ones
for uniform ferromagnetic structure θ = const.

4. Topological defects as optimal structures

From Eq. (8), vortices θ = ϕ ± π
2 (2π): V1, V2 and

hyperbolic defects θ = −ϕ ± π
2 (2π): H1, H2 as shown

from the field lines dr
rdϕ = cot(θ − ϕ) schematically re-

produced in Fig. 1, are metastable states at level two.
As a matter of fact, the dipolar interaction is damped by
the occurrence of defects. This damping stabilizes these
topological defects which define so the ground state.

Fig. 1. Schematic representation of the four basic
topological defects: vortex 1 (V1), vortex 2 (V2), hy-
perbolic defect 1 (H1) and hyperbolic defect 2 (H2).

These defects were already observed experimentally [5]
and can be seen in simulations [6]. Some other names are
also used as magnetic flowers for hyperbolic defect [9]. In
the case of strong perpendicular anisotropy, this explains
the stability of maze structures.

At level four as given by Eq. (9), these vortices and
hyperbolic defects also appear as metastable as well as
other topological defects characterized by the equations
which initially appeared about liquid crystals for Frank’s
disclinations [15]:
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θ = 2ϕ(π), (10)

θ = 2ϕ +
π

2
(π), (11)

θ = −2ϕ(π), (12)
θ = −2ϕ +

π

2
(π). (13)

The corresponding field lines define a double circle DC
and a sextic curve r = r0‖ cos 3ϕ‖1/3 HH as shown
schematically in Fig. 2. These defects can be distin-
guished in simulated Monte Carlo systems [6]. In the
case of strong perpendicular anisotropy, this explains the
arrangement of adjacent maze structures. The extrapo-

Fig. 2. Schematic view of the two basic fourth order
topological defects: DC — the double circle and HH —
the sextic curve.

lation to higher orders gives the following disclinations:
θ = ±nϕ(2π). (14)

In the case of strong perpendicular anisotropy, this ex-
plains the arrangement of several maze structures to-
gether.

5. Defect dynamics and conclusions

A first excitation mode for a defect consists in the
whole motion of this defect which can be a vortex, a
hyperbolic defect or other associations of vortices as DC
and HH. A second defect mode consists in a “breath-
ing” mode as usual for localized defects. This mode with
successive increase and shrinking of its area is obviously
coupled with the motions of other close defects. Then
the quartic modulation of Eq. (9) is also responsible for
quartic deformations of these defects. The extrapolation
to higher order means also a sextic deformation and so
on. This defines more complex vibrational modes of the
defects. Finally, creation and annihilation of defects must
also occur. Therefore, quite numerous excitation modes
are expected to occur and their inertial contributions are
also different. Quite obviously, a similar classification of
maze excitations occurs in the case of strong perpendic-
ular anisotropy.

As a conclusion, there is a link between topological de-
fects in magnetic dots and topological defects in liquid

crystals. There is also an efficient screening of dipolar
interaction by topological defects and this is that screen-
ing which is responsible for the observation of networks
of topological defects as they are in magnetic dots [1–5].
Quite numerous modes of various symmetry are expected
to occur.
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