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Interpretation of Loss Separation
with the Haller–Kramer Model
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The Haller–Kramer model for domain structure is reviewed in detail. Magnetic domains and domain walls
can be interpreted as the Prigogine dissipative structures. As consequence, processes of reversal of magnetization
in a hysteresis cycle can be modeled with the minimum energy production principle. The Haller–Kramer model
gives physical basis for the loss separation procedure.

DOI: 10.12693/APhysPolA.136.705
PACS/topics: 75.60.Ej, 75.60.Ch, 75.60.–d

1. Introduction

The loss separation model has been widely used since
at least 1936 [1]. With the aim of clarifying loss sep-
aration, the Haller–Kramer model [2, 3] will be dis-
cussed in detail. The minimum energy production prin-
ciple of Prigogine [4] is the basis of the Haller–Kramer
model [2, 3].

Dissipative structures may happen when minimum en-
ergy production takes place. The classical example of dis-
sipative structure is given by the Belousov–Zhabotinsky
reaction [5]. Another typical example of dissipative struc-
ture in materials science is that composed by cells and
dislocation cells [6, 7]. It is noteworthy that the elastic
stored energy at the dislocation cells is much larger than
inside the cells. Domains and domain walls is an analo-
gous case, with very large energy inside the tiny volume
occupied by domain walls.

The formation of domain walls occurs because this
reduces the global energy of the system. The magne-
tostatic energy is significantly reduced with drastic in-
crease of exchange energy, usually evaluated as the do-
main wall energy (γ). As it will be discussed here, this in
fact can be interpreted as a Prigogine dissipative struc-
ture, and is implicit inside the Haller–Kramer theoretical
treatment [2, 3].

When the system is in quasi-stationary state, the rate
of entropy production is minimum. This is the Pri-
gogine minimum energy production principle [4]. The
Gibbs free energy is given by G = H − TS, where
H is enthalpy, T is temperature, and G is Gibbs free en-
ergy. For constant temperature, and since the enthalpy
does not vary with time, dG/dt = 0 also can be con-
sidered for expressions representing the minimum energy
production.
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2. The Haller–Kramer model
and the loss separation

The Haller–Kramer model takes into account the total
energy of the system, including domain walls (exchange
energy), magnetostatic energy, and eddy currents. As the
global energy of the system is evaluated in the Haller–
Kramer model, this will result in a model where different
dissipative phenomena, both quasi-static (for frequency
near zero) and dynamic (due to eddy-currents) are con-
sidered. Thus the Haller–Kramer model provides a phys-
ical basis for loss separation.

Haller and Kramer [2] based their analysis on the
existence of different dissipative processes, one due to
eddy currents (Eeddy) and another due to creation and
annihilation of domain walls (Ewall), see Eqs. (1)–(2).
Ewall = nγA where A is domain area area, which is given
by the product A = ew and γ is domain wall energy.
Equations (1) and (2) are valid for frequency zero, and
also for any frequency. Note that n varies with the fre-
quency f . Note also that it is possible to write either
n(f) or n. The first part of Eq. (1) is the magnetostatic
energy Em. For magnetostatic energy, if the number of
poles (as North or South) is taken into account, then it
results in n+1. For the second part of Eq. (1), the domain
wall (or exchange energy) is taken into account, result-
ing in n (and not n+ 1). Haller and Kramer [2] assumed
that the system is in quasi-stationary state, see Eq. (3).
The number of domain walls n is function of frequency f ,
as experimentally observed [3]. The model of Haller and
Kramer [2] is for only one grain with length L, thick-
ness e, and width w, see Fig. 1. β is a constant found
from the WSK theory [5]. For a half cycle (f/2), Eeddy is
given by Eq. (4).

E ∼=
1

n+ 1
Em + nγA, (1)

E = 1.7M2
s (D/L) + γ/D, (2)

dE

dn
=

d(Eeddy + Ewall)

dn
= 0, (3)
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Eeddy =

f/2∫
0

βnv2dt. (4)

The domain wall velocity v is given by Eq. (5), for sinu-
soidal waveform. The constant β is given by Eq. (6) [8].
For sinusoidal waveform Eq. (4) becomes Eq. (7).
c is speed of the light, ρ is resistivity, Bs is the induction
of saturation. Bs is the magnetization of saturation Ms

times 4π, i.e., Bs = 4πMs. From Eq. (3), the equilibrium
distance between domain wallsD(f) is found, see Eq. (8).

v =

(
Lπf

n

)
cos(2πft), (5)

β = 1.05
16AeB2

s

ρπ3c2
, (6)

Eeddy = β
L2π2f

4n
, (7)

D(f) =
L

n(f)
=

2

π

√
γA

βf
. (8)

The eddy current term is from the Pry and Bean
model [9], taking into account the anomalous factor.
Thus, the separation between classical eddy Pclas and
anomalous Pan is artificial. The Pry and Bean result [9]
is Pclas + Pan = ξ(D/e)Pclas. The Pry and Bean original
calculation is for a very simple domain structure, which
may be valid for grain oriented steels. For other ma-
terials, as non-oriented steels with complex domain and
domain wall structure, the non-dimensional anomalous
coefficient ξ is defined.

Fig. 1. Scheme of the domain structure in the Haller–
Kramer model, with neighbor domains magnetized in
opposite directions.

One of the main predictions of Eq. (8) is that D(f)
varies with 1/

√
f . This law has been experimentally ver-

ified [3]. There are many reports [10–12], that the num-
ber of domain walls increases with frequency, following
a law of type n ∼ f1/2. This is used in the model for
anomalous losses given by Eq. (9) where a is an experi-
mental parameter [13]:

Pan = a
1

n
L1/2 1

ρ
e2B2

maxf
3/2. (9)

The total losses are Pt = Ph + Pcl + Pan, where Pt is
the total experimental losses, and Pcl is Eq. (10), and
Ph is Eq. (11). Expression (10) assumes perfect flux

penetration (i.e., no skin effect), constant permeability,
and is valid only for small frequencies, less than 400 Hz

Pcl =
π2

6

1

ρ
e2B2

maxf
2, (10)

Ph = f

∮
H dB. (11)

The frequency f exponents 1, 2, and 1.5 (1st, 2nd and
3rd terms, respectively) in Eqs. (12)–(14) can be derived
with the Haller–Kramer model. As the Haller–Kramer
model takes into account all the energy of the system,
the loss separation procedure can be obtained from it.
Equation (10) is for sinusoidal waveform, but it can be
adapted for other waveforms, by means of the constant
Ce, see Eqs. (12)–(14). Loss separation can be applied
to different waveforms, and not only for sinusoidal [14].
For example, the square waveform was considered in that
previous study [14].

Alternative expressions for the total losses Pt given by
the three losses terms are Eqs. (12) and (13). Ch, Ce,
and Ca are experimental constants. q and m are non-
dimensional, and experimentally determined.

Pt = ChB
qf + CeB

2f2 + CaB
mf3/2, (12)

Pt = ChB
(q−1)

(
dB

dt

)
+ Ce

(
dB

dt

)2

+CaB
(m−3/2)

(
dB

dt

)3/2

(13)

With proper choices of q and m, Eq. (14) is obtained for
total losses Pt:

Pt = Ch

(
dB

dt

)
+ Ce

(
dB

dt

)2

+ Ca

(
dB

dt

)3/2

. (14)

Dlala et al. [15, 16] have suggested that multiple har-
monics are relevant. Especially in the case of finite el-
ement models, multiple harmonics may deserve to be
taken into account [17]. In this case, the total losses Pt

given by Eq. (15) can be obtained from Eq. (14). Note
that Eq. (15) is a sum where the non-dimensional integer
j is multiplying the frequency f . Bj is the amplitude
of the j-th frequency harmonic of the flux density wave-
forms. The procedure of Dlala et al. [15, 16] has physical
basis provided by the Haller–Kramer model

Pt =

∞∑
j=1

[ChBj(jf) + CeB
2
j (jf)2 + CaB

3/2
j (jf)3/2].

(15)

3. Loss separation and material optimization

There are several dissipative processes inside a quasi-
static hysteresis cycle: (i) domain rotation; (ii) creation
and annihilation of domain walls; (iii) domain wall dis-
placement; (iv) elimination of domain closure walls with
magnetostrictive effects, see Fig. 2. The dependence with
f1 is clear, because these phenomena repeat once each
hysteresis cycle, resulting in Eq. (11).
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Fig. 2. Magnetostrictive effect due to formation or an-
nihilation of 90◦ closure domain walls. Adapted from
Kittel [18].

TABLE I

Quantitative effect of several variables on the three loss
components

Variable Classical eddy Hysteresis Anomalous
induction B B2

max B1.6–2.0
max B1.5–2.0

max

frequency f f2 f f3/2

resistivity ρ 1/ρ – 1/ρ

thickness e e2 e2

grain size Gs – 1/Gs G0.5
s

The dissipative mechanism presented in Fig. 2 is very
relevant, for example, for grain oriented steels. The for-
mation or annihilation of closure domain walls can gener-
ate significant noise [19]. Thus, magnetostriction can be
a significant source of hysteresis losses. This means that
the chemical composition of the electrical steels should be
chosen in such way to have the magnetostriction constant
near zero.

There is an example of soft magnetic material where
domain rotation is a relevant mechanism of magnetic re-
versal, and this is the case of high frequency ferrites [20].
MnZn ferrites are optimized with basis on the loss sep-
aration model. Expression (11) follows f1, whereas
Eq. (10) follows f2 and Eq. (9) follows f3/2. As conse-
quence, the strategy for material optimization in MnZn
ferrites is increasing hysteresis losses Eq. (11), and de-
creasing anomalous losses Eq. (9), with very small grain
size, less than 3 µm [20], where the reversal takes place by
domain rotation. For very high frequencies there is also
a ferromagnetic resonance loss term, which was discussed
by Van der Zaag [20]. The predictions of the loss separa-
tion model Eqs. (9)–(11) can be summarized in Tables I
and II. These predictions can be very useful for designing
material for high frequencies as 400 Hz or 1 kHz, and also
for choosing the most adequate materials when design-
ing motors that operate at variable frequencies. Vehicles
with electric motors are usually designed without gear-
box [21]. A common example is Tesla Model S, with a
9.73:1 gear reduction, without transmission. The motor
of Tesla Model S may operate at 18000 rpm or 300 Hz.
This shows the need of developing materials with low
losses at a significant range of frequencies (1 Hz to 1 kHz).

TABLE II

Qualitative effect of several variables on the three loss
components

Increase of the variable Eddy Hysteresis Anomalous
Si decreases decreases decreases
texture (improvement of) – decreases decreases
number of domain walls (n) – increases decreases
plastic deformation (rolling) – increases decreases
applied stress (compression) – increases increases
inclusions – increases (no effect)

The easiest way to get low losses in a wide frequency
range is reducing thickness and increasing resistivity —
this will reduce the dynamical part of the losses, the clas-
sical eddy plus anomalous (see Table I).

As a remark, it should be reminded that the Prigogine
minimum energy production can be used for modelling
the evolution of the domain and domain wall structures
as function of time. Thus, the Haller–Kramer model de-
serves more attention by the scientific community.

4. Conclusions

The Haller–Kramer model was discussed. It provides
physical basis for loss separation. The Prigogine min-
imum entropy production principle can be applied for
modelling domains and domain walls structure. The ef-
fect of several microstructural variables on losses (and
mechanical strength) was discussed with basis on the loss
separation procedure.
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