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Inverse Magnetocaloric Effect in Spin-1/2
Fisher’s Super-Exchange Antiferromagnet
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The isothermal entropy change and the adiabatic temperature change are rigorously calculated for the exactly
solved spin-1/2 Fisher’s super-exchange antiferromagnet in order to examine magnetocaloric properties of the
model in a vicinity of the second-order phase transition. It is shown that the large inverse magnetocaloric effect
occurs around the temperature interval Tc(h 6= 0) < T < Tc(h = 0) for any magnetic-field change ∆h : 0 → h. The
most pronounced inverse magnetocaloric effect can be found for the magnetic-field change, which coincides with
the critical field of a zero-temperature phase transition from the antiferromagnetically ordered ground state to the
paramagnetic one.
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1. Introduction

The magnetocaloric effect (MCE), which is character-
ized by an isothermal change of the entropy or an adia-
batic change of the temperature upon magnetic-field vari-
ation, enjoys a great scientific interest mainly because of
its immense application potential [1]. Besides a conven-
tional MCE observed in regular ferromagnets or para-
magnets, there may also be detected an inverse MCE,
namely, in ferrimagnetic or antiferromagnetic materials.
In the former case the system cools down when the mag-
netic field is removed adiabatically, while in the latter
case it heats up.

However, the MCE has been so far rigorously studied
only in one-dimensional spin systems (see e.g. Ref. [2]
and references therein) due to a lack of exactly solved
spin models in higher dimensions accounting for a non-
zero magnetic field. Theoretical description of the con-
ventional and inverse MCE in two- and three-dimensional
magnetic systems is thus usually based on some approx-
imative method [3].

The main goal of this work is to investigate the MCE
in exactly solved spin-1/2 Fisher’s super-exchange anti-
ferromagnet [4, 5], which allows an exact theoretical de-
scription of this phenomenon also in a two-dimensional
spin model.

2. Fisher’s super-exchange antiferromagnet

Spin-1/2 Fisher’s super-exchange antiferromagnet rep-
resents the spin-1/2 Ising model on a decorated square
lattice, in which the antiferromagnetic (ferromagnetic)
coupling J > 0 on horizontal (vertical) bonds are sup-
posed together with the external magnetic field h acting
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on decorating spins. The Hamiltonian of the model reads

H = J
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In above, µz
i(k) = ±1/2 labels the decorating Ising spin

at i-th horizontal (k-th vertical) bond and σz
j = ±1/2

denotes the nodal Ising spin at j-th site of the original
square lattice. The first (second) summation in Hamil-
tonian (1) is thus carried out over nearest-neighbour lat-
tice sites on the horizontal (vertical) bonds, while the
third term represents the Zeeman energy of the decorat-
ing spins µ.

At zero temperature, the system passes from the anti-
ferromagnetically ordered ground state to the paramag-
netic one when the magnetic field applied on decorat-
ing spins exceeds the critical value hc = J . The former
ground state is characterized by a perfect antiferromag-
netic arrangement of decorating spins placed on horizon-
tal and vertical bonds, while in the latter ground state the
system is broken into a set of 2N spins polarized towards
the magnetic-field direction due to a frustration of the
nodal spins σ. At finite temperatures, the existence of
the antiferromagnetic long-range order terminates at the
critical temperature Tc of the second-order phase transi-
tion, which monotonously decreases with increase of the
magnetic field until it entirely tends to zero at hc = J .

3. Magnetocaloric properties
Since Fisher’s super-exchange model (1) is exactly solv-

able within the decoration-iteration mapping transforma-
tion (for more computational details see works [4, 5]),
it provides an excellent paradigmatic example of an ex-
actly soluble two-dimensional spin system, which allows
an examination of the MCE in a vicinity of the continu-
ous (second-order) phase transition at non-zero magnetic
fields. Actually, the magnetocaloric quantities, such as
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the isothermal entropy change ∆ST and the adiabatic
temperature change ∆Tad upon the magnetic-field vari-
ation ∆h : 0 → h can be rigorously calculated by using
Fisher’s exact solution for the magnetic entropy S [5]:

∆ST (T,∆h) = S(T, h 6= 0)− S(T, h = 0), (2)

∆Tad(S,∆h) = T (S, h 6= 0)− T (S, h = 0). (3)
Recall that the former relation (2) is valid if the temper-
ature T of the model is constant, while the latter one (3)
satisfies the adiabatic condition S = const.

Fig. 1. Isothermal entropy change normalized per site
of the original square lattice versus temperature for sev-
eral fixed values of the magnetic-field change.

Figure 1 illustrates temperature dependences of the
isothermal entropy change (−∆ST ) normalized per site
of the original square lattice for various values of the
magnetic-field change ∆h : 0 → h. Crosses on relevant
curves mark weak singularities of the zero-field entropy
found at the critical temperature kBTc/J ' 0.3271, while
open circles denote weak singularities of the entropy lo-
cated at critical points of second-order phase transitions
at finite magnetic fields h/J = 0.3, 0.6 and 0.9. As
one can see, the magnetocaloric potential −∆ST may
be either positive or negative depending on the temper-
ature, which points to both conventional (−∆ST > 0)
and inverse (−∆ST < 0) MCE for any value of ∆h.
In the high-temperature region T � Tc, where only
short-range ordering occurs, −∆ST slowly increases to
the broad maximum with decrease of temperature due

to suppression of a spin disorder by the applied mag-
netic field. At certain temperature, −∆ST starts to de-
crease and changes sign from positive to negative as T
further decreases. The zero-temperature limits of −∆ST

are consistent with the entropy values S/NkB = 0, 0.6931
and 1.0705 of the antiferromagnetically ordered ground
state, the paramagnetic ground state and the coexistence
of both phases at a first-order phase transition, respec-
tively (for more details see Ref. [5]). Minima in low-
temperature parts of −∆ST (T ) curves observed around
the temperature interval Tc(h 6= 0) < T < Tc(h = 0) for
magnetic-field changes ∆h ∈ (0, J) clearly indicate a
large inverse MCE slightly above the second-order phase
transition (see Fig. 1a). The origin of this phenomenon
can be attributed to strong thermal fluctuations of spins
leading to an unusual thermally-induced increase of total
magnetization in this region (compare −∆ST (T ) curves
plotted in Fig. 1a with thermal variations of total mag-
netization shown in Fig. 9 of Ref. [4]). In accordance
with this statement, the inverse MCE gradually increases
and shifts to lower temperatures upon the increase of
the field change ∆h. It is obvious from Fig. 1 that
∆ST (T,∆h = J) < ∆ST (T,∆h 6= J) is always satis-
fied. Thus, one may conclude that the most pronounced
inverse MCE can be found for ∆h = J , which exactly
coincides with the critical field hc = J of the first-order
phase transition between the magnetically ordered and
paramagnetic ground states. If h > J , the inverse MCE
(minimum in −∆ST (T ) curves) is gradually reduced with
the increasing ∆h due to weakening of thermal excita-
tions from paramagnetic ground state towards the anti-
ferromagnetically ordered excited state (see Fig. 1b).

To discuss the MCE, one may alternatively investigate
the adiabatic temperature change ∆Tad of the system at
various magnetic-field changes ∆h : 0 → h. Tempera-
ture variations of this magnetocaloric potential for the
considered spin model are displayed in Fig. 2. All curves
plotted in Fig. 2 were calculated using Eq. (3) by keep-
ing the entropy constant. Crosses and open circles on
relevant curves determine positions of critical tempera-
tures for h = 0 and h ∈ (0, J), respectively. Obviously,
the adiabatic temperature change ∆Tad clearly allows to
distinguish the conventional MCE (∆Tad > 0) from the
inverse MCE (∆Tad < 0). In accordance to the previ-
ous discussion, the investigated model heats up faster in
a vicinity of the first-order phase boundary between an-
tiferromagnetically ordered ground state and the para-
magnetic ground state achieved upon the adiabatic re-
duction of the magnetic field. Indeed, the magnitude
of the negative peak in ∆Tad(T ) curves gradually in-
creases with magnetic-field change and shifts towards
the zero-field critical temperature kBTc/J ' 0.3271 as
the applied magnetic field approaches the critical value
hc = J (see Fig. 2a). In addition, ∆Tad versus tem-
perature plot ends at zero value in the asymptotic limit
of zero temperature for any ∆h ∈ (0, J), which can be
attributed to a perfect antiferromagnetic order of deco-
rating spins placed on horizontal and vertical bonds of
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Fig. 2. Adiabatic temperature change versus tempera-
ture for several fixed values of the magnetic-field change.

the square lattice at zero temperature. By contrast, the
adiabatic temperature change rapidly drops to the finite
values kB∆Tad/J = −0.3477 and –0.3189 at the temper-
atures kBT/J = 0.3477 and 0.3189 for the magnetic-field
changes ∆h ≥ J (see Fig. 2b). In this particular case, the
magnetocaloric potential ∆Tad cannot be defined below
aforementioned temperatures, because there is no tem-
perature end point in the adiabatic process if ∆h ≥ J .
This intriguing behaviour is evidently caused by residual
entropies S/NkB = 0.6931 and 1.0705 detected within
the paramagnetic ground state and the coexistence point
at the first-order phase transition hc = J , respectively.

4. Summary

In this paper, we have investigated magnetocaloric
properties of exactly solved spin-1/2 Fisher’s super-
exchange antiferromagnet by using the known exact solu-
tion for the magnetic entropy of the model [5]. The tem-
perature dependences of the isothermal entropy change
and the adiabatic temperature change have been partic-
ularly examined for various values of the magnetic-field
change. This study has enabled us to clarify the mag-
netic refrigeration efficiency of the model in a vicinity of
the critical temperature of the second-order phase tran-
sition, which completely destroys the antiferromagnetic
long-range order. The obtained results for both magne-
tocaloric potentials clearly indicate on the fast heating of
investigated spin system during the adiabatic demagne-
tization process (on a presence of the enhanced inverse
MCE) in this region due to strong thermal spin fluctua-
tions leading to the thermally-induced increase of the to-
tal magnetization. The maximal heating efficiency of the
system has been observed for the magnetic-field change
∆h = J , which coincides with the critical field hc = J
of the first-order phase transition between the antiferro-
magnetically ordered and paramagnetic phases.
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