
Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 4

Spin-1 Model of Noninteracting

Nanoparticles
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In this work, we presented a spin-1 model to investigate the magnetic

properties of noninteracting monodomain nanoparticles based on the pair

approximation. Nearest-neighbor pair interactions are incorporated between

the Ising spins in three parts that are core, core–surface, and surface within

the nanoparticle. Using the spin-1 Ising model of magnetization in the pair

approximation, we calculated the free energy and minimized with respect to

pair variables to obtain the field-cooled magnetization. Hysteresis loops of

the system were plotted for various values of exchange coupling constants,

and axial anisotropy of strength which couples the core, core–surface, and

surface regions. The coercive field and its linear fit to the data were plotted

as a function of radius of ferromagnetic nanoparticles.

PACS numbers: 75.50.Tt, 75.60.−d, 05.50.+q, 05.70.Ln

1. Introduction

The ferromagnetic orders in magnetic systems were dominated as mono-
domain (or single-domain) nanoparticles (NPs) consisting of ferromagnetic (FM)
surface and antiferromagnetic (AFM) core regions which couple with each other
in general [1, 2]. In the noninteracting NPs, the FM surface and AFM core are
only ordered at the lower temperatures. The magnetic properties of monodomain
NPs have been attracting great interest in physics and biomedicine in recent years
[3, 4]. Firstly, the Stoner–Wohlfarth model was used in detail to describe the low-
dimensional systems [5]. Magnetic evolutions for field-cooled and zero-field-cooled
behavior with temperatures of a single nanoparticle were performed in various
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magnetic fields by using different type approximations [1, 2, 6–8]. The experimen-
tal techniques were also used for the single NP [9]. Thermodynamic properties were
observed for two-dimensional magnetic NPs [10]. The first atomic-scale models of
the ferrimagnetic and heterogeneous systems in which the exchange energy plays
a central role in determining the magnetization of the NPs, were studied [11, 12].
A simple model has been developed to investigate magnetic nanoparticle-based
systems [13]. The first magnetization measurement of individual single-domain
NPs and nanowires (NWs) at very low temperature were presented [14]. Recently,
magnetic structure of a NP has been investigated based on the mean-field approx-
imation and Heisenberg Hamiltonian for a composite NP having inner FM core
and outer AFM shell has been used [15]. In the above works, each of the spin
sites which stand for the atomic moments in the NPs were described by the Ising
spin variables that take on two values, up and down. In spite of being extensively
used to calculate the magnetic properties of infinite systems, the spin-1 model in
the pair approximation [16–18] has not yet been used to calculate the magnetic
properties of noninteracting NPs. The studies of core–surface type NPs are ex-
tremely important for technology because of transmission of data at high density
to optical computer, nanorobot to assemble, compose rigid disk. The nanopar-
ticles have relevance to thin film devices in the new breed of magnetoelectronic,
etc., spin-valve, spin-transistor and spin-dependence tunneling devices [6]. The
technological applications of NPs are the focus of much research, but magnetic
NPs are also used as research tools in areas of medicine, biology and materials
physics.

In the scope of this work, we propose a spin-1 model to describe the magnetic
properties noninteracting nanoparticles. The model is based on the pair approxi-
mation of the classical Ising-type spins [19, 20]. Incorporating the pair correlations
between the spins inside the NP, we calculated the free energy and minimized with
respect to pair variables to obtain the field-cooled magnetization. Hysteresis loops,
field cooling magnetization (M) curves as a function of the reduced temperature
and coercive field as a function of radius of NPs (or shell number) were demon-
strated. The disorder of the spins at the surface induces a strongly ferromagnetic
ordering of the spins in the AFM core.

2. Theoretical model

We consider a spherical monodomain (noninteracting) nanoparticle with the
Ising spins on a hexagonal close packed (hcp) lattice for any 2D arrays which
can also be extended to 3D arrays as in Fig. 1. The shells and their number
originate from nearest-neighbor pair interactions in hcp lattice. In this structure,
number of shells can be associated with radius (R) of the NP. The radius R

includes number of the shells and the size of a NP increases as the number of
shells increases. Therefore, we considered the Ising spins in three parts that are
core (C), core–surface (CS) and surface (S) within the NP. Each of these parts



Spin-1 Model of Noninteracting Nanoparticles 837

contain core spin number (NC), core–surface spin number (NCS) and surface spin
number (NS), respectively. The total number of spins in a single NP involves core
spin number (NC) and surface spin number (NS). The surface and core spins
interact ferromagnetically and antiferromagnetically, respectively. This structure
is made up of three shells, namely C, CS and S regions.

Fig. 1. A spherical monodomain magnetic NP spaced coherently in a form of 3D array.

The shape of a single NP consists of the hexagonal lattice. The dashed lines displayed

shells of spins in two-dimensional finite array. The radius of NPs (R) includes shell

numbers. Inset in this figure exhibits coordination number of hcp structure.

The magnetic particles become single domain below a critical size in contrast
with the usual multidomain structure of the bulk magnetic materials. Therefore,
in the scope of this work, we will study magnetic properties of monodomain NPs
manifestations and only consider spin model Hamiltonians. The spin-1 model
Hamiltonian for homogeneous NPs is given by

H = −
∑

〈i,j〉
JijSiSj −H

N∑

i

Si, (1)

where the spins Si located at sites i on a discrete lattice can take the values ±1,
0, N is the total number of lattice points in NPs, H is the external magnetic field
and Jij is the exchange coupling between nearest-neighbor spins inside the NP. If
Jij > 0, parallel orientation of the spins is favored and at the low temperatures all
spins will be aligned ferromagnetically. For Jij < 0, the low temperature phase is
AFM with the spins aligned antiparallel. Equation (1) describes a paramagnetic
character at all temperatures when Jij = 0. The single-ion anisotropy is implicitly
included in the classical theoretical models of NPs according to the experimental
results [6]. Also, the anisotropy constant is usually small and anisotropy energy
contribution is considered as perturbation in quantum mechanical theories of NPs
[15]. Therefore, we neglected one-ion anisotropy constant in our classical Hamil-



838 O. Yalçin et al.

tonian. Having defined the relevant spins that describe the system we start by
writing the spin-1 model Hamiltonian with exchange interactions for core (JC),
core–surface (JCS) and surface (JS) regions (or composite NPs),

H = −
∑

〈i,j〉
JCSiSj −

∑

〈i,j〉
JCSSiSj −

∑

〈i,j〉
JSSiSj −H

N∑

i

Si, (2)

where 〈i, j〉 denotes a nearest-neighbor pair of lattice sites for each regions (core,
core–surface, and surface). Spin-1 model is a three-state system and the average
value of each of the spin states will be indicated by X1, X2 and X3, which are
also called the state variables or point variables. X1, X2, and X3 are the average
fractions of the spins with values +1, 0 and −1, respectively. These variables obey
the following normalization relation:

3∑

i=1

Xi = 1. (3)

In order to consider the pair correlation, we introduce the internal variables Yij ,
indicating the average number of the states in which the first member of the
nearest-neighbor pair is in state i and the second member in state j. These will
be called pair or bond variables interchangeably. The relations between Xi and
Yij are as follows:

Xi =
3∑

j=1

Yij (i = 1, 2, 3). (4)

If the number of pairs in the system is Np, the number of (+,+) bonds in the
system is Y11Np, (0, 0) bonds, Y22Np, (−,−) bonds, Y33Np, (+, 0) bonds, Y12Np,
(0, +) bonds, Y21Np, (+,−) bonds, Y13Np, (−,+) bonds, Y31Np, (0,−) and (−, 0)
bonds in the system are Y23Np and Y32Np, respectively. The Yij ’s are normalized
by the equations

3∑

i,j=1

Yij = 1. (5)

The average magnetization 〈M〉, which is the excess of one orientation over the
other orientation and also called the dipole moment, is given by

M = 〈M〉 = X1 −X3 = Y11 + Y12 + Y13 − (Y31 + Y32 + Y33). (6)
The interaction energy E can be written in terms of Yij as

βE = NC
γ

2

3∑

i,j

ηjiYij + NCS
γ

2

3∑

i,j

ηjiYij + NS
γ

2

3∑

i,j

ηjiYij , E = 〈H〉, (7)

where β = 1/kBT . NC, NCS, NS are the numbers of lattice points in core, core–
surface, and surface area, respectively. γ is the number of nearest neighbors for a
given lattice, or the coordination number of the lattice and where (all over the ηij

expression in NP combined each other)
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η11 = −JC − JCS − JS −H, η22 = 0, η33 = −JC − JCS − JS + H,

η12 = −H, η21 = 0, η13 = JC + JCS + JS −H,

η31 = JC + JCS + JS + H, η23 = 0, η32 = H. (8)
The number of ways in which independent pairs can be arranged on the lattice is

Wp =
(γNC/2)!∏3

i,j=1(γNCYij/2)!
· (γNCS/2)!∏3

i,j=1,3(γNCSYij/2)!
· (γNS/2)!∏3

i,j=1,3(γNSYij/2)!
, (9)

since there are Np,C = γNC/2, Np,CS = γNCS/2 and Np,S = γNS/2 pairs. In
terms of Xi the number of ways the spins can be arranged is

Wx =
NC!∏3

i=1(XiNC)!
· NCS!∏3

i=1(XiNCS)!
· NS!∏3

i=1(XiNS)!
. (10)

For this system the entropy and the free energy are given by

S = kB ln W, F = E − TS, (11)
where S = SC + SCS + SS. Using Eqs. (9)–(11) and making use of the Stirling
approximation, the free energy φ can be found as [16–18]:

φ = βF = NC
γ

2

3∑

i,j

ηijYij + NC
γ

2

3∑

i,j

Yij ln(Yij) + NCS
γ

2

3∑

i,j

ηijYij

+NCS
γ

2

3∑

i,j

Yij ln(Yij) + NS
γ

2

3∑

i,j

ηijYij + NS
γ

2

3∑

i,j

Yij ln(Yij)

−(γ − 1)
3∑

i=1

Xi ln(Xi) + βλ

(
1−

3∑

i,j=1

Yij

)
, (12)

where λ is introduced to maintain the normalization condition for each regions
(core, core–surface, and surface). The next to the last term includes the correc-
tion of the overcount of the pair term. The free energy for a system at equilibrium
is a minimum state. The minimization of Eq. (9) with respect to Yij leads to the
following nine self-consistent equations for the pair variables:

Yij =
1
Z

(XiXj)γ̄e−ηij ≡ eij

Z
, (13)

where

γ̄ =
γ − 1

γ
, Z = exp(2βλ/γ) =

3∑

i,j=1

eij . (14)

These nine self-consistent equations can be written explicitly by using Eq. (8) in
Eq. (13) as,

Y11 =
1
Z

(X1X1)γ̄ exp
γ

2
(−NCJC −NCSJCS −NSJS −NH) ≡ e11

Z
,

Y22 =
1
Z

(X2X2)γ̄ ≡ e22

Z
,
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Y33 =
1
Z

(X3X3)γ̄ exp
γ

2
(−NCJC −NCSJCS −NSJS + NH) ≡ e33

Z
,

Y12 =
1
Z

(X1X2)γ̄ exp
γ

2
(−NH) ≡ e12

Z
,

Y21 =
1
Z

(X2X1)γ̄ ≡ e21

Z
,

Y13 =
1
Z

(X1X3)γ̄ exp
γ

2
(NCJC + NCSJCS + NSJS −NH) ≡ e13

Z
,

Y31 =
1
Z

(X3X1)γ̄ exp
γ

2
(NCJC + NCSJCS + NSJS + NH) ≡ e13

Z
,

Y23 =
1
Z

(X2X3)γ̄ ≡ e23

Z
,

Y32 =
1
Z

(X3X2)γ̄ exp
γ

2
(NH) ≡ e32

Z
, (15)

where N = NC + NS. Above nine self-consistent equations are solved using the
Newton–Raphson method for hcp lattice with coordination numbers γ = 6 in 2D
or γ = 12 in 3D. After establishing the Yij values the field cooling magnetization
(M) values can be obtained easily using Eq. (6). The temperature and magnetic
field dependences of M are shown in Figs. 2, 3, and 4, respectively. The coercive
field (HC) and its linear fit to the data as a function of diameter are also plotted in
Fig. 3, and HC vs. reduced temperature is obtained by using the hysteresis loops
in Fig. 5.

3. Results and discussion
For the evolution of the normalized field-cooled magnetization (M) as a func-

tion of the reduced temperature (kBT/J0), we consider a six-shell NP whose core
is predominantly AFM, JC = −J0/2 for R = 0–5, with a FM surface, JS = 2J0 for
R = 6, which is ferromagnetically coupled with the core, JCS = J0 between R = 5
and R = 6 shells. The energy parameter is J0 = 1. The core includes the central
spin and all spins up to the fifth shell for R = 6, i.e., NC = 91, the surface has
NS = 36 spins and CS region has NCS = 33 spins. The ratio for six shells of NPs
between the surface and core spins is around 0.395. Using Eq. (6) we plot M vs.
kBT/J0 in Fig. 2 for the above values of the parameters. As seen from this fig-
ure, the changes in the magnetization with temperature also point out interesting
aspects. The magnetization curves are increasing from zero to +1 value while the
reduced temperature is decreasing. In additional, the total magnetization of non-
interacting NPs is slowly decreasing while magnetic field is increasing according
to the reduced temperature. The Curie temperature is decreasing as the magnetic
field is decreasing. In other words, the transition temperature in lower magnetic
field is significantly sharp compared to that for the transition temperature in high
magnetic field. It is interesting that for a very small magnetic field (and very small
NPs) a well-defined phase transition occurs. It can be seen from this figure that
the transition corresponds to a second-order phase transition.
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Fig. 2. The temperature evolution of normalized magnetization for field cooling in six

shells. Different values for the applied magnetic field are considered. The monodomain

NPs consist of R = 6 shells for NC = 91, NS = 36, NCS = 33 in 2D. J0 = 1, JC = −J0/2,

JS = 2J0, JCS = J0.

Fig. 3. (a) Hysteresis loops for various sizes of homogeneous NPs: R = 2 with NC = 7,

NS = 12, NCS = 9; R = 3 with NC = 19, NS = 18, NCS = 15; R = 6 with NC = 91,

NS = 36, NCS = 33 and R = 9 with NC = 217, NS = 54, NCS = 51 in 2D. T = 300J0/kB,

J0 = 1, JC = JS = JCS = J0. (b) The coercive field plotted as a function of R−2. The

open circles correspond to R = 2, 3, . . . , 9 and the straight line results from a linear fit

to the data.

The magnetic field evolutions (or hysteresis loops) of normalized magneti-
zation and its coercive field of the noninteracting homogeneous NPs for various
diameters are given in Fig. 3. We consider a FM coupling in surface (JS = J0),
core (JC = J0) and core–surface (JCS = J0) regions with J0 = 1 on a hexagonal
lattice. The hysteresis curves of small diameter NPs are approximately the same.
This behavior is called superparamagnetic (SP) regime. However, loops strongly
depend on the size (diameter) of NP and the hysteresis curves in high diameter
values change sharply, as shown in Fig. 3a. Moreover, the hysteresis loops are
broadening while the diameter of NP is increasing so that it approaches to bulk
materials. The size dependence of the coercive field HC is plotted as determined
from the magnetization loops in Fig. 3b. In the figure, the open circles correspond
to R = 2, 3. . . 9 and the straight line are the results from a linear fit to the data.
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The coercive field depends linearly on R−2. While the magnetic field increases, H

reaches HC.
Magnetic hysteresis loops of composite NPs for various sizes with R =

2, 3, 4, 6, 10 and for some selected temperatures with R = 3 shells, NC = 19,
NCS = 15, NS = 18 are shown in Fig. 4. The exchange interactions in the surface
and core regions are given by the coupling parameters JS = 5J0 and JC = J0

(J0 = 1), respectively, and the coupling between core and surface is due to an
AFM exchange constant JCS = −4J0. From the figure, it is clear that there is
no correlation between the inner FM core and outmost FM surface. Each spin
in the core and surface regions can be seen as an average interaction with all the
other spins. But, hysteresis curves strongly depend on the size of composite NPs,
as seen in Fig. 4a. The loops in high diameter values change suddenly. This be-
havior originates from bulk materials. We consider a AFM coupling between core
and surface when FM interactions exist on both surface and core. These hystere-
sis curves are plotted easily using Eq. (6). As shown in Fig. 4b, magnetization
changes with magnetic field near the zero value from −1 to +1. The evolutions of
hysteresis loops of composite NPs are seen to change monotonically as the tem-
perature increases. Figure 4b also shows the hysteresis curves of NPs in SP regime
at 550kBT and ferromagnetism between 150–450 kBT . In the inset, temperature
dependence of the coercivity (HC) is determined from magnetization loops in this
figure. The coercivity and SP transition temperatures exhibit important aspects
in the future high-density magnetic data storage.

Fig. 4. (a) Hysteresis loops for various sizes of composite NPs: R = 2; 3; 4 with

NC = 37, NS = 24, NCS = 21; 6 and 10 with NC = 271, NS = 60, NCS = 57 in 2D.

T = 350J0/kB, J0 = 1, JS = 5J0, JC = J0, JCS = −4J0. (b) The same as Fig. 4a but for

different temperatures of composite NP with R = 3 shells and in the inset temperature

dependence of the coercivity is determined from magnetization loops in this figure.

Finally, the evolution of the hysteresis loops for various sizes (R = 2, 3, 4, 6,
8, and 10) of composite NPs are given in 2D in Fig. 5. In this figure, the reduced
temperature and exchange constants are T = 350J0/kB, J0 = 1, JC = −J0/2,
JCS = J0 and JS = 2J0, respectively. The dotted line and full line correspond,
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Fig. 5. Hysteresis loops for various sizes of composite NPs: R = 2, 3, 4, 6, 8, and 10

in 2D. Here R = 2, 3, 4, 6, and 10 shells have the same number of spins as in Fig. 4.

The number of spins for core, surface and core–surface regions with R = 8 shells are

NC = 169, NS = 48, NCS = 45, respectively. T = 350J0/kB, J0 = 1, JC = −J0/2,

JCS = J0, JS = 2J0.

respectively, to broadening and narrowing loops with increasing size of NP. The
AFM nanoparticles could exhibit SP relaxation of their spin lattices as well as the
permanent moments arising from uncompensated surface spins. As evidenced by
this figure, the hysteresis curves are dramatically changed with increasing radius
between R = 6 and R = 8. This change is reasonable to anticipate the same effect
as a result of the exchange interaction between the uncompensated FM surface
and AFM core of the particles. In other words, AFM core is dominating according
to the FM surface in NPs. The quantum effects and experimental results make
the NPs system very exciting for future investigations.

4. Conclusion
In this work, we focus on the magnetic properties of the noninteracting

homogeneous ferromagnetic NPs and composite NPs having inner AFM (and FM)
core, a FM (and AFM) coupling between core and surface and outer FM surface
for various diameters and temperatures. As seen from Figs. 3a, 4a, and 4b, the
magnetic behavior is proportional with diameter of NPs and inversely proportional
with temperature, respectively. The magnetic properties of monodomain NPs have
a marked dependence on the particle size and the surface effects start to dominate.
In noninteracting NPs having large ratio of surface to volume, the spin disorder
may modify the magnetic properties. Supposing the number of core atoms is NC,
the number of surface atoms according to the number of core atoms is (1/4)NC

for individual NPs. The spin disorder can be caused by lower coordination of
the surface atoms, broken exchange interactions that produce spin-glass like state
of spatially disordered spin in the surface captions with inhomogeneous surface
effects [21–23]. When the diameter of the NPs decrease, the overall behaviors
can be changed. At high temperatures and small size of nanoparticles, hysteresis
is observed as expected in the SP behavior. With increase in the particle size
the Curie temperature approaches the bulk materials’ Curie temperature which



844 O. Yalçin et al.

is a consistent result with those of the site-dependent mean-field approach for
the Heisenberg spins developed in Ref. [15]. Below the Néel temperature, the
outer AFM surface and inner FM core gets ordered. The size effect of small
monodomain NPs is observed and reduction in the number of the surface spin
causes fundamental changes in the magnetic order. The magnetic properties of
NPs from this work are quite different from bulk materials. It is clear that the
transition temperature of NPs is lower than that of corresponding bulks materials.
Magnetic properties of NPs can be described by assuming that all the magnetic
moments are rigid as a single “giant” spin. This property is the essence of the
superparamagnetism.
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