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Interface states of all-metallic carbon nanotube quantum dots and su-

perlattices are studied within a tight-binding model. We focus on achiral

systems made by connecting armchair (n, n) and zigzag (2n, 0) tubes with

a full ring of n pentagon-heptagon topological defects. We show that the

coupling between interface states, which arise from the topological defects,

reflects the existence of the Friedel oscillations in the (n, n) tube, with an

unusually large decay exponent. We expect this interaction to be impor-

tant for the understanding of other physical properties, such as selective dot

growth, magnetic interaction through carbon tubes or optical spectroscopy

of interface states.

PACS numbers: 73.22.−f, 73.90+f

1. Introduction

Carbon nanotubes are one of the most promising materials for nanotech-
nological applications [1]. A variety of nanodevices entirely based on carbon na-
notubes have been demonstrated [2], exploiting the unique relation between geom-
etry and electronic properties shown by these systems. Since carbon nanotubes can
behave as semiconductors or metals, the proposal of structures made by joining dif-
ferent kinds of tubes with topological defects has an evident interest for the design
of one-dimensional devices. Therefore, the electronic structure of single junctions
[3], quantum dots [4, 5] and superlattices [6, 7] has been the subject of many
theoretical investigations. Recently, the controlled growth of carbon nanotube
intramolecular junctions by temperature variations has been reported [8]. This
breakthrough may open the possibility of fabricating complex nanotube devices,
which have to be fully characterized. Most of the theoretical effort is focused on
states due to quantum confinement. However, due to the presence of topological
defects, these systems may have interface states, which have a profound influence
in their electronic properties and performance. These interface states have not
been so thoroughly analyzed, and they are the focus of the present work.
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We have studied the interface states of achiral carbon nanotube quantum
dots and superlattices within a π-orbital tight-binding model. We focus on
metallic-based structures made by connecting armchair (n, n) tubes with zigzag
(2n, 0) tubes, with n multiple of three. Junctions between these tubes contain n

pentagon-heptagon pairs that give rise to interface states when n > 3. With a
double junction, a quantum dot (QD) can be formed: The N(2n, 0) QDs are made
sandwiching N unit cells of a (2n, 0) tube between two semiinfinite (n, n) leads;
we denote such structures as (n, n)/N(2n, 0)/(n, n) or, more briefly, N(2n, 0).
Conversely, a N(n, n) QD is made by joining an N(n, n) portion to two (2n, 0)
leads, making a (2n, 0)/N(n, n)/(2n, 0) structure. Superlattices (SLs) consist of
a periodic sequence of N(2n, 0) and M(n, n) portions of nanotubes joined by n

pentagon-heptagon pairs, denoted as M(n, n)/N(2n, 0). We calculate QD spectra
using a Green function matching technique; for SLs direct diagonalization provides
bands and their corresponding wave functions.

Fig. 1. (a) Energies of the interface states of the (6, 6)/N(12, 0)/(6, 6) quantum dots

vs. dot size N . The dashed lines show the fits to ∝ 1/dα. (b) Interface state energies

for the (12, 0)/N(6, 6)/(12, 0) dots as a function of dot size N . The inset in (b): zoom

in the region of large N for the N(6, 6) series.

The bands of armchair and zigzag tubes close to the Fermi energy have
different symmetry; this symmetry barrier gives rise to confinement in multiple
junction structures based on these kinds of tubes. Thus, completely localized
states appear in QDs [5] and dispersionless bands are found in SLs [6, 7]. However,
in this work we focus on the nature of interface states, which are due to topological
defects at the junction between tubes and therefore have a mixed character. In
single junctions interface states are well localized and easy to identify because of
their high local density of states (LDOS), but in short-period QDs or SLs a more
detailed symmetry analysis is needed to identify them [7].

2. Results and discussion
In short-period SLs or QDs of small size, interface states interact and their

energies split and differ considerably from the energy of interface state at the single
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Fig. 2. Interface state energies for the N(9, 9) and N(18, 0) (upper insets) quantum

dots vs. dot size N . Part (a) corresponds to the series converging to Ei1 = −0.2824 eV

in the limit of large N ; (b) shows the series converging to Ei2 = −0.2203 eV. The dashed

lines in the upper insets show the fits to ∝ 1/dα. Lower insets: zoom in the region of

large N for the corresponding N(9, 9) series.

junction [6, 5]. As expected, in the limit of large sizes, their energies converge to
the single junction limit and they are mainly localized in the defect interface region.
Surprisingly, the energy dependence with system size depends on the geometry:
for QDs, we find that zigzag N(2n, 0) dots show a monotonous behavior, whereas
for N(n, n) armchair QDs, the interface state energies oscillate with the system
size N . We can check this in two specific examples: In Fig. 1 we show the energies
of the interface states vs. dot size for the N(12, 0) and N(6, 6) cases. Figure 1a
depicts the interface state energies for the zigzag N(12, 0) QD series, with a clear
monotonic behavior. In Fig 1b the N(6, 6) QD interface energies present clear
oscillations; the inset zooms the data for larger N . We see in all cases that the
energies converge to the interface energy of the single junction, Ei = −0.2850 eV.
A larger radii case, the (18,0) and (9,9) QDs, is shown in Fig. 2. As the single
(18, 0)/(9, 9) junction has two interface states with energies Ei1 = −0.2824 eV
and Ei2 = −0.2203 eV, for these QDs we have to analyze two series of levels,
corresponding to Ei1 and Ei2, shown in Fig. 2a and b, respectively. We find the
same behavior, i.e., a monotonous decay for the zigzag QD series, displayed in the
upper insets, and an oscillating pattern for the armchair QD series.

This is also observed for superlattices. In order to compare SLs bands with
QD states, we plot the energy of the band center for the SL cases. In Fig. 3 we
present the superlattice series corresponding to the QDs shown in Fig. 1: i.e., the
M(6, 6)/N(12, 0) SL interface bands, whereas Fig. 4 displays the results for the
M(9, 9)/N(18, 0) SLs. The cases selected correspond to a sufficiently large fixed
unit cell length, in order to make a comparison with the QD cases. We can see
that for M(n, n)/N(2n, 0) SL series with fixed M and varying zigzag length, the
interface state energy bands have a monotonic variation. However, oscillations are
observed if the armchair length M is varied. Let us notice that for the varying
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Fig. 3. Energies of the interface bands for the N(12, 0)/14(6, 6) (a) and 8(12, 0)/N(6, 6)

(b) superlattices vs. N . The inset in (b): zoom in the region of large N .

Fig. 4. Interface band energies for the 8(18, 0)/N(9, 9) and N(18, 0)/14(9, 9) (upper

insets) superlattices vs. dot size N . Part (a) corresponds to the series converging to

Ei1 = −0.2824 eV in the limit of large N ; (b) shows the series converging to Ei2 =

−0.2203 eV. The dashed lines in the upper insets show the fits to ∝ 1/dα for the

N(18, 0) series. Lower insets: zoom in the region of large N for the corresponding

N(9, 9) interface band series.

zigzag length series shown in the upper insets, the energies of the higher and lower
energy bands do not converge to the same energy value; there is a small splitting
due to coupling through the armchair section. In order to fit these zigzag series,
we have taken the average of the two limit values; this average actually equals the
interface state energy of the single junction. The fits are shown in dashed lines
in the upper insets. Due to coupling through the fixed length sections, there are
some numerical differences between SL and QD results, but the general trend is the
same as shown for quantum dots. Below we show how these apparently disparate
behaviors found in zigzag and armchair series can be understood as Friedel-like
oscillations.

In general, the Friedel oscillations are related to the presence of impurities,
defects or inhomogeneities — such as surfaces — in metallic systems, typically
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reflected in the charge density, but ubiquitous in other properties of the system,
such as total energies or magnetic coupling. Effectively, the magnitude of interest
presents oscillations that can be described by the function as

f(d) =
A sin(2kF(d + δ0))

dα
, (1)

where kF is the wave vector of the metallic host, δ0 is a phase shift that takes
into account the wave function penetration, d is the length of the metallic part
responsible of the oscillatory behavior, and α is a damping factor usually related
to the dimension of the system [9], being α = 3 for impurities in three-dimensional
metals, α = 2 for two-dimensional systems and so forth. Thus, on the one hand,
given that for zigzag metallic tubes kF = 0, it can be understood that for M(2n, 0)
QDs, or for SL series with varying zigzag tube length, the behavior is not oscilla-
tory, but monotonous. On the other hand, oscillations are observed in armchair
QDs or in SL series with varying armchair length, because in this case is nonzero,
kF ≈ 2

3
π
a , with a = 2.46 Å, the unit cell length of any armchair tube.

To verify, whether these oscillations are Friedel-like, we have studied the
energy dependence with system size in the instances described above. We con-
centrate on the interface state of the lowest energy. In the first place, in order to
obtain the damping factor, we focus in the zigzag series, where kF = 0. Fitting
the data shown in Fig. 1a, we get a value around α = 3.5 in the N(12, 0) series.
With respect to the N(18, 0) QDs shown in Fig. 2, we obtain the values α1 = 3.9
and α2 = 2.5, respectively. These damping factors are larger than expected for
one-dimensional systems, which is given by the system dimension, α = 1. Another
remarkable fact is that different exponents are found for the two interface states
in the same system, the N(18, 0) series. These states show a quite different degree
of confinement, pointing to the fact that besides dimensionality, localization plays
an important role.

Fig. 5. Second derivative of the lowest interface state energy (full line with circles)

multiplied by the dot size d to the α as a function of the dot size N . Part (a) shows the

results for the N(6, 6) quantum dot. Parts (b) and (c) correspond to the two interface

state series of the N(9, 9) quantum dot; (b) shows the series converging to Ei1 = −0.2824

eV in the limit of large N , and (c) presents the series converging to Ei2 = −0.2203 eV.

The dashed lines are the fits to Eq. (1) multiplied by ∝ 1/dα.
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Fig. 6. Second derivative of the lowest interface state energy (full line with circles)

multiplied by the dot size d to the α for the N(6, 6)/M(12, 0) SL (a), (9, 9)/(18, 0)

series converging to Ei1 = −0.2824 eV (b), and (9, 9)/(18, 0) series converging to Ei2 =

−0.2203 eV (c). The dotted line is the fit to the function defined by Eq. (1) times dα.

We use these damping factors to fit the energies of the interface states in the
N(n, n) QD series shown in Figs. 1 and 2. As the amplitude of the oscillations
decreases with increasing length, it is commonly studied the second derivative
of the magnitude of interest, where the oscillations are more evident. Figure 5
shows the second derivative of the lowest interface state energies for the QD cases
presented in Figs. 1 and 2, where the damping is removed by multiplying by dα.
The spatial periods obtained are 1.4 unit cells for the N(6, 6) series and 1.4 and
1.3 unit cells for the interface states Ei1 and Ei2 of the N(9, 9) QDs, respectively,
close to theoretically expected of 3

2 unit cells.
The oscillations in SLs have been studied using the same approach. Figure

6a shows the oscillating part of the second derivative of the lowest interface band
energy for a M(12, 0)/N(6, 6) SL; Fig. 6b and c show the same quantity for the two
lowest interface bands series of the (18, 0)/(9, 9) SL. The spatial periods obtained
for the SLs are roughly the same as for QDs, with differences below 5%. In all
cases presented in Figs. 5 and 6, the oscillations seem to have a larger periodicity;
this is the so-called aliasing effect. The interference between the two characteristic
lengths of the system, i.e., the system size and the wavelength ≈ (2kF)−1, gives the
impression of a longer periodicity, but, as described above, all the spatial periods
obtained are around the theoretically expected value.

The Friedel oscillations in carbon nanotubes may have different conse-
quences: it may govern growth processes in systems involving metallic nanotubes
with kF 6= 0, yielding a size selection, as it happens with nanoclusters [10], where
magic numbers for cluster sizes appear. It may also influence the magnetic cou-
pling through metallic nanotubes, as it happens in metallic multilayers [11, 12].
Finally, the interface bands of the zigzag/armchair SLs studied here appear just
below and above the Fermi level. Thus, the oscillations in level separation will
surely be observed in optical experiments.

To summarize, we have shown that interface states and bands in pure metallic
carbon nanotube structures may reflect the existence of the Friedel oscillations in
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metallic tubes with kF 6= 0. The oscillations of the energies of interface states
may influence physical properties and processes of the carbon nanotube junction
systems, as for example system growth.
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