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Dynamic Conductivity of Electrons and Electron�Phonon

Interaction in Open Three-Well Nanostructures
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The theoretical description of electronic tunneling transport through the three-well nanostructure
(In0.53Ga0.47As/In0.52Al0.48As), being an expanded active region of quantum cascade detector, is presented. Using
the solution of the Schrödinger equation, the dynamic conductivity caused by quantum transitions due to the inter-
action of electrons with electromagnetic �eld and phonons is calculated. Within the Green functions approach, the
electron spectrum, renormalized due to the interaction with con�ned optical and interface phonons is obtained at
cryogenic and room temperatures. The role of di�erent mechanisms of electron�phonon interaction in the formation
of temperature shifts, decay rates of electron states and electromagnetic �eld absorption bands is investigated. It is
shown that independently of the temperature, the contribution produced by interface phonons into renormalized
electron spectrum is several times bigger than that of con�ned phonons. However, the experimentally observed
long-wave shift and broadening of absorption band at higher temperatures is, mainly, caused by the decreasing
heights of resonant tunneling structure potential barriers.
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1. Introduction

The experimental producing of �rst quantum cas-
cade lasers (QCL) [1, 2] and quantum cascade detectors
(QCD) [3, 4] stimulates the intensive experimental [5�
10] and theoretical [11�16] investigation of physical pro-
cesses in these nanodevices. Such multi-layer nanostruc-
tures have the characteristic potential pro�le for the elec-
trons, which tunnel from the input potential well into the
output one, performing quantum transitions between the
quasi-stationary states, accompanied by emitting or ab-
sorption of electromagnetic �eld quantum.
At �rst, the experiments, particularly concerning

QCL [1, 2], were held at cryogenic temperatures. In the-
oretical papers [11�16], the spectra and quantum tran-
sitions were studied for the closed resonant tunneling
structure (RTS) placed into the outer medium-barrier.
The transport properties of electronic currents through
the open multi-layer RTS placed into the outer medium-
well were studied in theoretical papers [17�20]. The e�ect
of phonons was assumed as not essential, thus the main
attention was paid to the spectral and transport charac-
teristics depending on physical parameters and geomet-
rical design of RTS.
Further, the temperature range of functioning devices,

in particular QCD [3], enlarged till the room tempera-
tures [5�10]. This fact, together with the other reasons
was expected taking into account the phonon subsystem
for the theoretical models describing the electron-�eld in-
teraction arising during the electrons transport through
the multi-layer RTS.

*corresponding author; e-mail: ktf@chnu.edu.ua

In the �rst experimental paper [3], it was shown that
QCD fabricated of In0.53Ga0.47As/In0.52Al0.48As cas-
cades successfully operated both at cryogenic (T = 10 K)
and room (T = 300 K) temperatures. Analysis of the
results proved that rather wide electromagnetic �eld ab-
sorption band (Γ ≈ 10 meV) with maximal responsivity
at wavelength (λ = 5.35 µm) and T = 10 K, became
wider and shifted into the long wave region when the
temperature increased till the room one.
In the theoretical models describing the closed

RTS [11�16] developed without taking into account the
interaction between electrons and dissipative systems,
the stationary states (between which the quantum tran-
sitions occur due to electron��eld interaction) are char-
acterized by energies (without decay rates) and oscillator
forces of these transitions. At the same conditions, in the
open models of RTS [17�22], the quasi-stationary states
with �nite life times arise, thus, the tunneling transport
of electrons is observed. The electronic dynamic conduc-
tivity and rather wide electromagnetic �eld absorption
band is observed here even without taking into account
the dissipative subsystems.
As far as the phonon occupation numbers are sensitive

to the temperature, one can expect that electron�phonon
interaction should a�ect on the temperature dependence
of QCD operating parameters. Now then, the investiga-
tion of this interaction in multi-layer RTS is important
not only to display its negative role in the renormalized
electron spectrum and, thus, in the variation of absorp-
tion band parameters but, also, because according to the
idea of paper [3], the phonons play the key positive role
in the functioning of QCD. Just the electron�phonon in-
teraction in extractor �phonon ladder� causes the relax-
ation of electrons from the excited quasi-stationary state
of active region of previous cascade into the ground quasi-
stationary state of the nest one.
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The theory of electron�phonon interaction in one- and
two-well closed nanostructures was developed in many
papers ([13, 23�29] with references) using the model of
e�ective mass for the electrons and dielectric contin-
uum model for the con�ned optical (L) and interface (I)
phonons. For these models, the electron�phonon Hamil-
tonian was written in the representation of phonon oc-
cupation numbers and in coordinate one over the elec-
tron variables. The spectrum of I-phonons in multi-
layer nanostructures, as a rule, was obtained within the
transfer matrix approach. The probabilities of quantum
transitions between electron states were found using the
Fermi golden rule at di�erent temperatures and design
of RTS. As far as we know, in the cited and other pa-
pers, the theory of electron�phonon interaction does not
explain the small broadening and long wave shift of elec-
tromagnetic �eld absorption band observed during the
experiment [3] at the increasing temperature of QCD.
In this paper we present the results of theoretical de-

scription, compared to the experimental data, of tem-
perature dependences of electronic dynamic conductivity
and electromagnetic �eld absorption band for the three-
well RTS being an expanded active region of QCD, taking
into account the varying heights of potential barriers and
electron�phonon interaction.

2. Transmission coe�cient

and dynamic conductivity of electrons

in the open three-well RTS

The plane open (o) three-well RTS with geometrical
parameters shown in Fig. 1 is studied in Cartesian coor-
dinate system with OZ axis perpendicular to the planes
of nanostructure. The electron Hamiltonian has the form

Ho
e (r) = Tρ +H(o)

e (z). (r = ρ+ nzz). (1)

Here Tρ is the kinetic energy of electron, moving in the
direction parallel to the planes of RTS,

H(o)
e (z) = −~2

2

∂

∂z

1

m(z)

∂

∂z
+ U (o)

e (z) (2)

is the term describing the kinetic energy in the direction
perpendicular to the planes of RTS with electron e�ective

mass m(z) in the �eld U
(o)
e (z) of the rectangular poten-

tial pro�le of open system

m(z) =

{
mw;

mb;
U (o)
e (z) =

{
0, wells,

U, barriers.
(3)

The mono-energetic current of uncoupling electrons with
concentration (n0), moving perpendicularly to the planes
of RTS, interacts with electromagnetic �eld characterized
by frequency (ω) and intensity (F ). In dipole approxi-
mation, the Hamiltonian of electron��eld interaction in
RTS has the form

H(z, t) = −2eFz [θ(z − z−1)− θ(z − z7)] cosωt. (4)

Assuming, for the sake of simplicity, and according to
the experiment that the kinetic energy of electron mov-
ing along the RTS is much bigger than its energy in
transversal direction (Tρ), we obtain the complete one-

dimensional Schrödinger equation

i~
∂Ψ (o)(E,ω, z, t)

∂t
=[

H(o)
e (z) +H(z, t)

]
Ψ (o)(E,ω, z, t). (5)

It has the exact solutions in each part of RTS (j =
0, 1, . . . , 8), thus, the wave function of electron�photon
system which takes into account all �eld harmonics is
written as

Ψ (o)(E,ω, z, t) =

8∑
j=0

Ψ
(o)
j (E,ω, z, t)[θ(z − zj−1)− θ(z − zj)]. (6)

Here

Ψ
(o)
j (E,ω, z, t) =

∞∑
p=−∞

e−
i
~ (E+p~ω)t

∑
`=±

A
(`)
pj e i`Kpjz

×

{
1, p = 0, 8

e i [α(z) sinωt+`βpj cosωt], p = 1− 7,
(7)

where

α(z) =
2eFz

~ω
, βpj =

2eFKpj

mjω2
, (8)

Kpj=

{
kp=~−1

√
2mw (E+p~ω), j=0, 2, 4, 6, 8,

χp=~−1
√

2mb (E+p~ω−U), j=1, 3, 5, 7.
(9)

E is the electron energy, α, βpj are the time-independent
coe�cients, z−1 → −∞, z6 → +∞.

Fig. 1. Scheme of potential pro�les and electron ener-
gies in open (o) and closed (c) three-well resonant tun-
neling structure.

The complicated wave functions (7) are essentially sim-
pli�ed for the actual case when the three-well RTS is an
active element of experimental QCDs [5�10], detecting
the weak electromagnetic �elds satisfying the condition
eFd� U , where d is the size of nanostructure.

Expanding the periodical functions Ψ
(o)
j , expres-

sion (7), into the Fourier range over the Bessel func-
tions and preserving the linear term over the �eld inten-
sity (F ), we obtain the wave functions of electron�photon
system in the so-called small signal one-mode (p = 0,±1)
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approximation

Ψ̃
(o)
j (E,ω, z, t) = e− iEt/~

∑
`=±

(10)

×



A
(`)
0j e i`k0z +A

(`)
1j e i`k1z e− iωt

+A
(`)
−1j e i`k−1z e iωt, j=0, 8

A
(`)
0j e i`K0jz

[
1 + 1

2 (i`β0j + α) e iωt

+ 1
2 (i`β0j − α) e− iωt

]
+A

(`)
1j e i`K1jz[

e− iωt + 1
2 (i`β1j + α)

]
+A

(`)
−1j e i`K−1jz

[
e iωt + 1

2 (i`β−1j − α)
]
, j=1÷7

The electronic current with energy (E) impinges at

RTS from the left hand side, since A
(+)
±1,0 = 0 and

A
(−)
p8 = 0, (p = 0,±1). The other unknown coe�cients

(A
(±)
pj ) are �xed by the conditions of continuity of each

harmonic of complete wave function and their densities of
currents at all RTS interfaces in any moment of time (t):

Ψ
(o)
j (E,ω, zj , t) = Ψ

(o)
j+1(E,ω, zj , t)

1
mj

∂
∂z Ψ

(o)
j (E,ω, z, t)

∣∣∣
z=zj

=

1
mj+1

∂
∂z Ψ

(o)
j+1(E,ω, z, t)

∣∣∣
z=zj

 (j = 0÷ 7). (11)

The coe�cients (A
(`)
pj ) obtained from this system of

equations are the linear functions of �eld intensity (F )
and complicated functions of electron energy (E) and
�eld frequency (ω). Finally, the wave function of
electron��eld system is de�nitely �xed. In its turn, ac-
cording to the quantum mechanics [30], it determines
the stationary and dynamic densities of electronic cur-
rent through the RTS. The stationary densities of input
and output current de�ne the transmission coe�cient

D(E) =
∣∣∣A(+)

08
(E)/A(+)

00
(E)
∣∣∣2 , (12)

which, in its turn, �xes the spectral parameters (res-
onance energies En and widths Γn) of electron quasi-
stationary states [17].

The calculation of dynamic currents [18, 20] makes it
possible to obtain the real part of dynamic conductivity
of the system caused by the electron��eld interaction.
It is convenient to express this conductivity as a sum of
two partial terms

σ(E,ω) = σ+(E,ω) + σ−(E,ω). (13)

Herein

σ±(E,ω) =
~2ωn0

2dmwF 2
(14)

×(k+1|A(±)
+1

{
8
0

}(E,ω, F )|2−k−1|A(±)
−1

{
8
0

}(E,ω, F )|2),

are the partial terms caused by the input (σ+) and output
(σ−) electronic current through the RTS, respectively.
As far as the coe�cients (A(±)) are the linear functions
of the �eld intensity, expressions (12), (14), both D and σ
are independent of it in the framework of small signal one-
mode approximation. The transmission coe�cient (D)
is the function of electron energy (E) while the dynamic

conductivity (σ) is proportional to the concentration (n0)
and depends both on the electron energy (E) and �eld
frequency (ω). Both of them depend on geometrical pa-
rameters of three-well RTS.

3. Hamiltonian of electron-phonon system

in closed three-well RTS in the representation

of second quantization

In order to develop the theory of electron�phonon in-
teraction in open multi-layer RTS within the Green func-
tions approach, one has to use the complete set of or-
thonormal electron wave functions. These functions for
the quasi-stationary states corresponding to the under-
barrier resonance energies (E < U) should be localized
enough. It is clear that the �nal results are to be indepen-
dent of the choice of the set of functions. However, this
choice determines the character of the problems arising in
the approach analyzed in detail in Ref. [28]. The spread
method is to assume that the thicknesses of RTS outer
barriers are rather big and, thus, the barriers become
in�nite. Consequently, the electron under-barrier states
are characterized by localized wave functions obtained
from the stationary Schrödinger equation and the above-
barrier states � by the non-localized ones.

According to the abovementioned, we are going to
study the closed (c) three-well RTS with in�nite outer
barriers (b1 = b4 → ∞, Fig. 1). Thus, in the Hamil-

tonian (2), instead of the potential energy U
(o)
e (z, b1, b4)

for open RTS we put U
(c)
e = lim

b1,b4→∞
U

(o)
e (z, b1, b4) for

the closed one.

The solution of stationary Schrödinger equation with
Hamiltonian (1) for the electron in closed three-well RTS
is written as

Ψ
(c)
ñk (r) = Ψ

(c)
ñk (ρ, z) =

1√
S

e ikρΨ
(c)
ñ (z),

k = nxkx + nyky, ñ =

{
k⊥, E ≥ U
n, E < U

}
, (15)

where S is the square of the main region in XOY
plane. We introduce the correlated e�ective mass m−1ñ =
∞∫
−∞

dz
∣∣∣Ψ (c)

ñ (z)
∣∣∣2 /m(z) instead of m(z) in the term Tρ,

as in Ref. [31], in order to simplify the Hamiltonian He

and separate the variables ρ and z. As a result, the com-

plete electron energy E
(c)
ñk consists of kinetic energy of its

movement in XOY plane (~2k2/2mñ) and the energy of

longitudinal movement E
(c)
ñ :

E
(c)
ñk =

~2k2

2mñ
+ E

(c)
ñ . (16)

The energy spectrum (E
(c)
ñ ) and wave functions

(Ψ
(c)
ñ (z)) are obtained from the one-dimensional

Schrödinger equation
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{
−~2

2

d

dz

1

m (z)

d

dz
+ U (z)

}
Ψ

(c)
ñ (z) =

E
(c)
ñ Ψ

(c)
ñ (z) . (17)

Its exact solutions are the functions

Ψ
(c)
ñ (z) =



∑
j=2,4,6

Ψ
(c)
jñ (z) =∑

j=2,4,6

(
A+
jñ e ikñz +A−jñ e− ikñz

)
,∑

j=1,3,5,7

Ψ
(c)
jñ (z) =∑

j=1,3,5,7

(
A+

jñ
eχñz +A−jñ e−χñz

)
,

(18)

where

kñ = ~−1
√

2mwE
(c)
ñ , (19)

χñ = ~−1
√

2mb(U−E(c)
ñ )=

√
2mbU~−2−k2ñmb/mw.

The �tting conditions

Ψ
(c)
jñ (z)|z=zj = Ψ (c)

j+1ñ
(z)|z=zj ; (20)

∂Ψ (c)
jñ

(z)

mj(z)∂z

∣∣∣∣∣
z=zj

=
∂Ψ (c)

j+1ñ
(z)

mj+1(z)∂z

∣∣∣∣∣
z=zj

, j = 1− 6

and normalization ones
∞∫
−∞

Ψ (c)∗
n (z)Ψ

(c)
n′ (z)dz = δnn′ ,

∞∫
−∞

Ψ
(c)∗
k′⊥

(z)Ψ
(c)
k⊥

(z)dz = δ(k⊥ − k′⊥) (21)

de�nitely �x the coe�cients (A±jñ), wave functions

(Ψ
(c)
jñ (z)), energies (E

(c)
ñ ) and, since, the complete en-

ergy spectrum (E
(c)
ñk ) and orthonormalized set of wave

functions (Ψ
(c)
ñk (ρ, z)).

Introducing the quantized wave function

Ψ(ρ, z) =
∑
ñ,k

Ψ
(c)
ñk (ρ, z)añk (22)

with creation (a+ñk) and annihilation (añk) Fermi opera-
tors of electron states, we obtain the Hamiltonian (1) in
the representation of their occupation numbers

He =

∫ ∫
Ψ+(ρ, z)He(ρ, z)Ψ(ρ, z)dρdz =∑

ñk

E
(c)
ñka

+
ñkañk. (23)

It is well known [23�29], that in the dielectric continuum
model, the spectra and potentials of polarization �elds
of optical con�ned (ΦL(r)) and interface (ΦI(r)) phonons
are obtained from the following equation:

εj(ω)∇2Φ(r) = 0. (24)

Herein, for the nanostructure with ternary compound

j-th layer, the dielectric functions (εj(ω)) are �xed by
the Lyddane�Sachs�Teller relation

εj(ω) = εj∞
(ω2 − ω2

jL1
)(ω2 − ω2

jL2
)

(ω2 − ω2
jT1

)(ω2 − ω2
jT2

)
, (25)

where εj∞ is high frequency dielectric constant, ωjL1 ,
ωjL2 and ωjT1 , ωjT2 are the frequencies of longitudinal
(Lj1, Lj2) and transversal (Tj1, Tj2) phonon modes of
the respective bulk crystals.

Solving Eq. (24) and using the known [29] proce-
dure of quantization of con�ned phonons �eld (ΦL(r))
at εj(ω) = 0, ∇2ΦL(r) 6= 0 and interface phonons �eld
(ΦI(r)) at εj(ω) 6= 0, ∇2ΦI(r) = 0, we obtain the Hamil-
tonian of phonon system

Hph=HL +HI =

7∑
j=1

2∑
l=1

∑
λq

ΩjLl
(b+jLlλq

bjLlλq + 1/2)

+
∑
sq

ΩIsq(b
+
IsqbIsq + 1/2), (26)

where ΩjLl
= ~ωjLl

are the energies and bjLlλq, b
+
jLlλq

are Bose operators of the pairs (l = 1, 2) of con-
�ned phonons of j-th layer; ΩIsq are the energies and
bIsq, b

+
Isq are Bose operators of interface phonons where

smeans the number of mode with two-dimensional quasi-
momentum q. The energies of interface phonons are ob-
tained from the dispersion equation

6∏
j=2

(1+ εb(ω)
εw(ω)

) (
1− εb(ω)

εw(ω)

)
e−2qzj−1(

1− εb(ω)
εw(ω)

)
e2qzj−1

(
1+ εb(ω)

εw(ω)

) =

[
1 0

0 1

]
,

(27)

found from the condition of non-trivial solution of the
system of equations

fj e−qzj+gj eqzj=fj+1 e−qzj+gj+1 eqzj

εj(ω) [fj e−qzj−gj eqzj ] =

εj+1(ω) [fj+1 e−qzj−gj+1 eqzj ]

 (j=1−5), (28)

�xing the continuity of induction and polarization �eld
of I-phonons at all nanostructure interfaces.

The Hamiltonian of electron�phonon interaction
He−ph(r) = −e(ΦL(r) + ΦI(r)) after the normalization
and quantization of both �elds (L- and I-phonons) and
transition from the coordinate representation to the oc-
cupation numbers one, using the quantized wave func-
tion (22), is obtained in the representation of second
quantization over all variables of the system

He−ph = He−L +He−I =

7∑
j=1

2∑
l=1

∑
λq

∑
ñ1ñk

F jLl

ñ1ñ
(λ, q)a+ñ1k+q

añk

(
bjLlλ,q + b+jLlλ,−q

)
+
∑
sq

∑
ñ1ñk

F Iñ1ñ(s, q)a+ñ1k+q
añk

(
bs,q + b+s,−q

)
. (29)

Here
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F jLl

ñ1ñ
(λ, q) = −

√
8πe2~

S[π2λ2 + q2(zj − zj−1)2]

[
∂εj(ω)

∂ω

∣∣∣∣
ω=ωjLl

]−1/2 zj∫
zj−1

dzΨ
(c)∗
jñ1

(z)Ψ
(c)
jñ (z)

×

 cos
[
πλ
(
z−zj−1

zj−zj−1
− 1

2

)]∣∣∣
λ=1,3,5...

sin
(
πλ
(
z−zj−1

zj−zj−1
− 1

2

))∣∣∣ λ=2,4,6...

j = 1− 7, z−1 → −∞, z7 →∞ (30)

� the binding functions of electrons in states ñ1, ñ with
L-phonons of j-th layer,

F Iñ1ñ(s, q)=−

√
4πe2~

qSN(s, q)

7∑
j=0

zj∫
zj−1

dzΨ
(c)∗
ñ1

(z)Ψ
(c)
ñ (z)

×
[
fj(s, q)e−qz + gj(s, q)eqz

]
(31)

� the binding functions of electrons in states ñ1, ñ with
I-phonons. The normalization coe�cient

N(s, q)=

7∑
j=0

∂εj(ω)

∂ω

∣∣∣∣
ω=ωsq

[
g2
j
(s, q)

(
e2qzj − e2qzj−1

)
−f2

j
(s, q)

(
e−2qzj − e−2qzj−1

)]
(32)

is determined by the magnitudes fj , gj , obtained from
the system of Eqs. (28). The integrals in the formu-
lae (30), (31) are analytically calculated but we do not
present them due to their sophisticated forms.

The obtained Hamiltonian of electron�phonon system
in three-well RTS in the representation of second quan-
tization over all variables

H = He +HL +HI +He−L +He−I, (33)

allows us to calculate the Fourier-image of electron Green
functions for the discrete spectrum (ñ = n).

At �nite temperature (T 6= 0 K), small concentration
of electrons and weak binding with phonons, according to
the rules of the Feynman�Pines diagram technique [32],
the Fourier-image of electron Green function is found
from Dyson equation

Gn(k, ~ω) =
{
~ω − E(c)

nk −Mn(~ω,k)
}−1

(34)

with mass operator (MO) Mn(~ω,k), calculated in one-
phonon approximation taking into account the discrete
(ñ1 = n1) and continuum (ñ1 = k⊥) parts of the
spectrum

Mn(~ω, k) =
∑
ñ1,p,q

F ∗nñ1
(p, q)Fñ1n(p, q)

×

[
1 + νpq

~ω − E(c)
ñ1

(k − q)− Ωpq + iη

+
νpq

~ω − E(c)
ñ1

(k + q) + Ωpq + iη

]
. (35)

Here we introduced the generalized index for the
phonon modes (p = {j, `, λ; s}), which at p = j, `, λ
numerates all modes of L-phonons in j-th layers of
three-well RTS and at p = s � all I-phonon modes,

respectively. The magnitudes νpq =
{

eΩpq/kBT − 1
}−1

are the average phonon occupation numbers for the re-
spective modes. The �rst term in MO (35) describes
the physical processes accompanied by the creation of
phonons and second one � by the annihilation.

According to the theory of the Green functions [32],
at weak electron�phonon interaction, the discrete part of

electron energy spectrum (E
(c)
n ) is renormalized (Ẽ

(c)
n )

due to the shift ∆n

Ẽ(c)
n = E(c)

n + ∆n =

E(c)
n + ReMn(~ω = E(c)

n , k = 0) (36)

and decay rate

γn = −2ImMn(~ω = E(c)
n , k = 0). (37)

Further, we are going to study the contributions of di�er-
ent mechanisms of electron�phonon interaction into the
complete shift of the energies (∆n) and decay rates (γn)
of n-th state. These parameters, according to the addi-
tive form of MO (35), are conveniently written as

∆n = ∆L
n + ∆I

n =

(∆L
nn + ∆L

nd + ∆L
nc) + (∆I

nn + ∆I
nd + ∆I

nc), (38)

γn = γLn + γIn = (γLnn + γLnd + γLnc)

+(γInn + γInd + γInc), (39)

where ∆L,I
nn , γL,Inn are the partial contributions into

the shift (∆n) and decay rate (γn) produced by intra-
band electron�phonon interaction with L- and I-phonons;

∆L,I
nd =

∑
n1 6=n

∆L,I
nn1

, γL,Ind =
∑
n1 6=n

γL,Inn1
are the partial con-

tributions produced by interband interaction with L- and
I-phonons through the all states of discrete (d) spectrum;

∆L,I
nc =

∑
k⊥

∆L,I
nk⊥

, γL,Inc =
∑
k⊥

γL,Ink⊥
are the partial contribu-

tions produced by electron�phonon interaction through
the all states of continuum (c).

The analytical calculation of partial shifts and de-
cay rates is performed using the corresponding terms
of MO (35) and transiting from sum over quasi-
momentum q to the integral (

∑
q
⇒ S/4π2

∫∫
d2q) with

Dirac relationship∫ ∫
d2q

f(q)
+ iη =

P

∫ ∫
d2q

f(q)
− iπ

∫ ∫
δ (f(q))d2q, (40)
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where symbol P means that the respective integrals are
taken as Cauchy principal values.
The partial shifts of the energy (∆nn) and decay rate

(γnn) of n-th state due to the intraband interaction with
L- and ?? I-phonons are given by the expressions

∆nn =

S

4π2

∑
±,p

P

∫ ∫
|Fnn(p, q)|2 (νpq + 1/2± 1/2)

E
(c)
n − E(c)

nq ± Ωpq
d2q, (41)

γnn =
S

2π

∑
±,p

∫ ∫
|Fnn(p, q)|2 (νpq + 1/2± 1/2)

×δ
(
E(c)
n − E(c)

nq ± Ωpq

)
d2q. (42)

These expressions are exactly integrated analytically for
the partial contributions produced by dispersionless L-
phonons. The calculation of I-phonons contributions
is performed within numeric computer integration be-
cause the occupation numbers (νsq) depend on quasi-
momentum q.

4. Discussion of the results

In order to study the temperature dependences of elec-
tromagnetic �eld absorption bands parameters (shifts
and broadening) caused by quantum transitions between
electron quasi-stationary states in active region of QCD
one has to study the temperature dependences of spec-
tral parameters (resonance energies and widths) of elec-
tron quasi-stationary states. The latter are mainly
caused by the varying potential pro�le of RTS due to
the varying width of energy gap for the wells and bar-
riers and electron�phonon interaction within the tem-
perature dependence of phonon occupation numbers be-
cause the nanostructures, grown by molecular beam epi-
taxy method, almost do not contain impurities and have
rather perfect interfaces between nanolayers.
In order to study the e�ect of both abovementioned

mechanisms at temperature dependence of electromag-
netic �eld absorption band, according to the theory de-
veloped earlier, we calculated the electron energy spec-
trum (Ec

n) in closed model together with the spectral
parameters (resonance energies (Eo

n), widths (Γ
o
n)) and

dynamic conductivity in open three-well RTS (without
taking into account the electron�phonon interaction).
The nanostructure is studied as expanded active region
(EAR) of QCD separate cascade: in addition to two wells
(layers 4 and 6 in Fig. 1), where the electrons are mainly
located in operating quasi-stationary states (n = 1; 3)
between which the quantum transition accompanied by
absorption of electromagnetic �eld happens, it contains
the last well (layer 2) of the extractor of previous cascade
from which the electrons, emitting L- and I-phonons, get
into the ground state of active region, being localized
mainly in input well of active region (layer 4).
In order to compare the results of computer calcula-

tions with experimental data, we studied the three-well

RTS with In0.53Ga0.47As wells and In0.52Al0.48As bar-
riers, creating the EAR of QCD separate cascade in-
vestigated in experimental paper [3]. Geometrical pa-
rameters of open RTS are taken the same as in [3]:
a1 = 4.7 nm, a2 = 5.9 nm, a3 = 1.7 nm, b1 = 2.8 nm,
b2 = 2.6 nm, b3 = 6.0 nm, b4 = 4.4 nm. The e�ective
masses of electrons in wells (mw = 0.051me) and barriers
(mb = 0.084me) are assumed as constant and the heights
of potential barriers are di�erent (UT=10 K = 554 meV;
UT=300 K = 520 meV) due to the temperature depen-
dences of the energy gaps [33]. We calculated the three
lower energies of electron spectrum for the closed model
and resonance energies and widths for the open three-well
RTS at cryogenic (T = 10 K) and room (T = 300 K) tem-
peratures (Table I). The results of calculations presented
in Table I prove that in both models, the energies of
two lower states are coinciding till the decimal numbers
and the energy of the third one di�ers at 2�3 percents.
In the closed model the states are stationary, while in the
open one the states are quasi-stationary with resonance
widths (Γ o

n).

TABLE I

Three lower energies of electron spectrum for
the closed model and resonance energies and
widths for the open three-well RTS at cryo-
genic (T = 10 K) and room (T = 300 K)
temperatures.

n T [k] Ec
n [meV] Eo

n [meV] Γn [meV]

1
10 93.64 93.14 0.007
300 91.63 91.03 0.011

2
10 125.53 126.08 0.601
300 122.47 123.15 0.727

3
10 324.73 334.06 8.667
300 311.61 320.60 9.930

According to the general idea of experimental QCD [3],
the electrons from the state (n = 2) being in extractor
well (layer 2, Fig. 1) are emitting phonons and transit
into the state (n = 1) of the well (layer 4) of the main
element of active region (MEAR), where from, absorb-
ing the electromagnetic �eld energy, within the quantum
transition, the electrons get into the state (n = 3), being
mainly located in the well (layer 6) of expanded active
region (EAR). We studied the resonance energies (Eo

n),
widths (Γ o

n) and dynamic conductivities (σ13, σ
±
13) for

the open model at T = 10 K and T = 300 K depending on
the design of three-well RTS, being an EAR of QCD. For
the �xed, as in paper [3], sizes of the well (a2 = 5.9 nm)
and barriers (b2 = 2.6 nm, b3 = 6.0 nm) of MEAR and
sum of the sizes of outer wells (a = a1 + a3 = 6.4 nm,
a1 = 4.7 nm, a3 = 1.7 nm), we calculated Eo

n, Γ o
n ,

σ13, σ
±
13 as functions of the position of MEAR between

the outer barriers (layers 1 and 7) of EAR, that is of the
varying size (0 ≤ a1 ≤ a) of the well (layer 2).
As far as spectral parameters and dynamic conductiv-

ities depend on a1 qualitatively and quantitatively sim-
ilarly at both temperatures, in Fig. 2 we present EoT

n ,
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Fig. 2. Spectral parameters of electron quasi-
stationary states, complete and partial terms of
dynamic conductivity as functions of the position of
main element of active region (a1) in three-barrier RTS
at T = 300 K (a2 = 5.9 nm, a = 6.4 nm, ∆1 = 2.8 nm,
∆2 = 2.6 nm, ∆3 = 6 nm, ∆4 = 2.8 nm).

lnΓ oT
n , ln σ̃T13, ln σ̃±T13 only at T = 300 K. Herein, the

dynamic conductivities are conveniently expressed in rel-
ative units σ̃13 = (σ13/maxσ13), where maxσ13 is the
maximal magnitude of σ13 in the range 0 ≤ a1 ≤ a. Fig-
ure proves that design of three-well RTS, i.e. the position
(a1) of MEAR in EAR, brings to the varying of resonance
energies: weak for Eo

1 and Eo
4 (till 10%) and considerable

one for Eo
2 and Eo

3 (twice). It is caused by the fact that
the ground and fourth quasi-stationary state are formed
by the well (layer 4) and barriers (layers 3 and 5) of
MEAR with �xed sizes while second and third ones are
formed by the wells (layers 2 and 6) of EAR with varying
sizes.

The resonance widths (Γ o
n) of these four quasi-

stationary states are strongly non-linear functions of a1,
because the life times (decay rates) of these states de-
pend on the probability of electron location in de�nite
well of RTS, as well as on the thicknesses of the barriers
through which it tunnels.

Partial terms of dynamic conductivity are formed by
forward (σ+

13) and backward (σ−13) electronic currents
through the RTS, thus, as one can see from Fig. 2, their
magnitudes and, since, the complete dynamic conductiv-
ity (σ13) strongly depend on the fact, where the electron
is located with bigger probability, as a result of quan-
tum transition: in the input (layer 2) or output (layer 6)
well of EAR. The con�guration of EAR in the experi-
mental QCD [3] is realized in such a way (aexp1 = 4.7 nm,

aexp3 = 1.7 nm) that in the quantum transition from the
�rst quasi-stationary state formed by the well (layer 4) of
MEAR into the third one formed by output well (layer 6)
the dynamic conductivity (σ13) appears. It is, mainly,
formed by forward current, which is much bigger than
the backward one (σ+

13 ≈ 55σ−13). It ensures the tunnel-
ing of electrons into the next extractor of the cascade
and, since, the QCD operation.

Fig. 3. Energy spectra of con�ned optical L-phonons
and I-phonons in three-well RTS with ternary com-
pound layers.

The e�ect of L- and I-phonons on electron spec-
trum is studied for the closed three-well RTS
(In0.53Ga0.47As/In0.52Al0.48As) using the dielectric con-
tinuum model with the same sizes of EAR wells and
barriers as in [3] and physical parameters ε0w = 14.21,
ε∞w = 11.63, ε0b = 12.73, ε∞b = 8.15; ΩwL1

=
29.1313 meV, ΩwL2

= 34.05 meV, ΩbL1
= 29.1304 meV,

ΩbL2
= 47.8905 meV. The I-phonons spectrum obtained

from dispersion Eq. (27) and con�ned L-phonons are
presented in Fig. 3. Here one can see 4 modes of con-
�ned L-phonons, which are dispersionless, and 24 modes
of I-phonons with weak dispersion. The latter create
4 groups, containing 6 modes each. For the small quasi-
momentum each group contains three modes with pos-
itive and the three with negative dispersion, respec-
tively. The two almost degenerated low-energy groups
of I-phonon energies are placed between the energies of
transversal (ΩwT1

, ΩbT1
) and longitudinal (ΩbL1

, ΩwL1
)

phonons of the respective bulk crystals, while two high-
energy groups with essential dispersion � between the
energies (ΩwT2

, ΩwL2
) and (ΩbT2

, ΩbL2
).
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In order to study the e�ect of di�erent phonon modes
on the renormalized electron spectrum at cryogenic (T =
10 K) and room (T = 300 K) temperatures, we calcu-
lated the complete shifts (∆n) and decay rates (γn) to-
gether with their partial terms caused by the interaction
between electrons and L-, I-phonons through the intra-
band states (∆nn, γnn) and due to the interband interac-
tion through the states of discrete spectrum (∆nd, γnd)
and continuum (∆nc, γnc). The results are presented in
Table II for the three lower (operating) electron states.
Here symbol Σ means the sum contribution of L- and
I-phonons into the spectral parameter.

TABLE II

The shifts and decay rates caused by the interaction be-
tween electrons and L-, I-phonons at cryogenic (T = 10 K)
and room (T = 300 K) temperatures.

n T ∆nn ∆nd ∆nc ∆n γnn γnd γn
[K] [meV]

L -0.64 -0.07 -0.029 -0.74 0 0 0

10 I -3.68 -0.10 -0.003 -3.78 0 0 0

1
Σ -4.32 -0.17 -0.032 -4.52 0 0 0
L -1.05 -0.14 -0.053 -1.24 0.301 0.001 0.302

300 I -3.60 -0.29 -0.015 -3.91 1.001 0.097 1.098

Σ -4.65 -0.43 -0.068 -5.15 1.302 0.098 1.400

L -0.53 -0.05 -0.021 -0.60 0 0 0

10 I -4.27 -0.11 -0.004 -4.38 0 0 0

2
Σ -4.80 -0.16 -0.025 -4.98 0 0 0
L -0.90 -0.08 -0.053 -1.03 0.227 0.001 0.228

300 I -4.12 -0.44 -0.021 -4.58 1.197 0.047 1.244

Σ -5.02 -0.52 -0.074 -5.61 1.425 0.048 1.473

L -0.16 -0.06 -0.034 -0.25 0 0.024 0.024

10 I -4.60 -0.34 -0.017 -4.96 0 0.053 0.053

3
Σ -4.76 -0.40 -0.051 -5.21 0 0.077 0.077
L -0.28 -0.10 -0.051 -0.43 0.079 0.016 0.095

300 I -6.60 -0.04 -0.049 -6.69 1.918 0.001 1.919

Σ -6.88 -0.14 -0.100 -7.12 1.997 0.017 2.014

The analysis of Table II proves that independently of
the temperature, the spectral parameters of operating
electron states (n = 1, 2, 3) are renormalized, mainly,
due to electron�I-phonon interaction. Its contribution
into ∆n, γn is several times or the order bigger than
that of L-phonons. The main contribution into the neg-
ative shifts (∆n < 0) of all energy levels is performed by
intraband (∆nn) interaction between electrons and L-,
I-phonons. The contributions of interband interaction
through the states of discrete spectrum (∆nd) are an or-
der smaller and that of continuum (∆nc) are two orders
smaller. The negative energy shifts (∆n) increase for the
bigger n and temperature.

The decay rates (γn) of electron states at cryogenic
temperature T = 10 K are mainly formed due to the
interaction with virtual phonons in the processes of
their creation because their average occupation num-
ber is very small (ν ≈ 10−18). Thus, according to the
law of energy conservation, the decay rate of electron

state (n) produced by the intra- and interband interac-
tions through the states with bigger energy (n′ > n) is
absent and the one produced by the interband interaction
through the states with smaller energy (n′ < n) happens

at the condition E
(c)
n (k) − E(c)

n′ (k − q) − Ωλ(q) = 0. For
the same reason, γ1 = γ2 = 0; γ3 = γ3d = γ31 6= 0 at
T = 10 K (Table II).
At �nite temperatures (T = 300 K) the decay rates

(γn) of electron states are proportional to the average
occupation numbers (νλq) of real L- and I-phonons and
are formed, mainly, in the processes of their annihila-
tion. Table II proves that the main contribution into
γn is produced by intraband interaction with phonons,
herein the contribution of I-phonons prevails over that of
L-phonons.

Fig. 4. The contributions of L- and I-phonons into the
partial energy shifts and decay rates (a, b, c) and com-
plete energy shifts and decay rates (d, c, f) of three oper-
ating states as functions of the position of main element
of active region (the well width (a1)) at T = 10 K (�0�)
and T = 300 K (�T�).

In Fig. 4 the partial and complete energy shifts and
decay rates of three operating electron states are pre-
sented as functions of position of MEAR (a1) in EAR at
T = 10 K and T = 300 K. One can see that the energy
shifts and decay rates of di�erent states nonlinearly de-
pend on a1, but the hierarchy of contributions of di�erent
mechanisms of electron�L- and I-phonon interactions is
almost the same as previously analyzed one for the ex-
perimental con�guration [3] of EAR at aexp1 = 4.7 nm.
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TABLE III

Energies and widths of absorption bands for quantum tran-
sition 1 → 3 and di�erences between the energies of second
and �rst state without taking into account phonons and
considering them for the open and closed models of RTS.

T
Ec

13/

Ẽc
13

Eo
13/

Ẽo
13

Eexp
13

Γ c
13/

Γ̃ c
13

Γ o
13/

Γ̃ o
13

Γ exp
13

Ec
12/

Ẽc
12

Eo
12/

Ẽo
12

[K] [meV]

10
231.1/

230.4

240.9/

240.2
233.1

0/

0.18

8.7/

8.9
10.0

31.9/

31.4

32.9/

32.4

300
220.0/

218.0

229.6/

227.6
227.1

0/

2.01

9.9/

13.4
16.4

30.9/

30.4

32.1/

31.6

Using the obtained results for spectral parameters and
renormalized due to electron�phonon interaction ones,
we calculated the energies and widths of absorption
bands for quantum transition 1 → 3 and di�erences be-

tween the energies of second and �rst state (E
(o,c)
13 =

E
(o,c)
3 − E(o,c)

1 , Γ13 = Γ1 + Γ1, E
(o,c)
12 = E

(o,c)
2 − E(o,c)

1 )
without taking into account phonons and considering

them (Ẽ
(o,c)
13 = E

(o,c)
13 + ∆3 − ∆1, Γ̃13 = Γ13 + γ3 + γ1,

Ẽ
(o,c)
12 = E

(o,c)
12 +∆2−∆1) for the open (o) and closed (c)

models of three-well RTS. These magnitudes, together
with the respective ones obtained in experimental pa-
per [3] are presented in Table III at cryogenic and room
temperatures. It is clear that the energies of absorption
band at T = 10 K and T = 300 K in both models are sim-
ilar. However, the results of open model (with electron�
phonon interaction) somewhat better coincide with ex-
perimental data. On the contrary to the closed model,
where the width of absorption band arising at quantum
transition between the stationary states is caused only by
interaction with phonons, in open one it is also caused by
the decays due to the �nite life times of quasi-stationary
states. Consequently the widths of absorption band ob-
tained in closed model di�er from the experimental data,
while that of the open one correlate with them well. Ac-
cording to Ref. [3], the width of the band increases and
its position shifts into the low-energy region at the in-
creasing temperature. Herein, Tables II and III prove
that the temperature broadening and short-wave shift of
absorption band due to the weak electron�phonon inter-
action are small comparing to its broadening due to the
decreasing life times of electron quasi-stationary states
and long-wave shift caused by the decreasing heights of
potential barriers because of smaller di�erences between
the widths of energy gaps for the wells and barriers at
bigger temperature.

5. Conclusions

Using the model of e�ective mass and rectangular po-
tential for the electrons and dielectric continuum one for
the optical I- and L-phonons, we present the theoreti-
cal description of electron�phonon interaction in closed
three-well nanostructure In0.53Ga0.47As/In0.52Al0.48As.

The Hamiltonian of the system is obtained in the rep-
resentation of second quantization over all variables.
The renormalized parameters of electron spectrum (en-
ergy shift and decay rate) are calculated within the
method of the Green functions at cryogenic and room
temperatures. The contributions of di�erent mecha-
nisms of electron�phonon interaction into the renormal-
ized electron states are studied as functions of three-well
RTS con�guration at the example of expanded active re-
gion of cascade of experimental QCD [3]. It is shown that
at all conditions, the contribution produced by I-phonons
is several times bigger than that of L-phonons.

Using the solution of complete Schrödinger equation,
we studied the spectral parameters (resonance energies
and widths) of electron quasi-stationary states and active
conductivity caused by quantum transitions due to in-
teraction of electrons with electromagnetic �eld in three-
well RTS. It is established that phonons, at any tempera-
ture, weakly a�ect on the electron energy due to the weak
electron�phonon binding. Thus, their contribution into
the formation of electromagnetic �eld absorption band,
arising due to the quantum transition, is small.

The long-wave shift and broadening of absorption band
at higher temperature is, mainly, caused by the decreas-
ing heights of RTS potential barriers due to the di�er-
ent magnitude of energy gaps for the wells and barriers,
depending on temperature. The theoretical results well
coincide with the experimental data [3].

References

[1] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori,
A.L. Hutchinson, A.Y. Cho, Science 264, 533 (1994).

[2] C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep.
Prog. Phys. 64, 1533 (2001).

[3] D. Hofstetter, M. Graf, T. Aellen, J. Faist, L. Hvoz-
dara, S. Blaser, Appl. Phys. Lett. 89, 061119 (2006).

[4] M. Graf, N. Hoyler, M. Giovannini, J. Faist, D. Hof-
stetter, Appl. Phys. Lett. 88, 241118 (2006).

[5] S. Kumar, Q. Hu, J.L. Reno, Appl. Phys. Lett. 94,
131105 (2009).

[6] A. Bismuto, M. Beck, J. Faist, Appl. Phys. Lett. 98,
191104 (2011).

[7] L. Tombez, J. Di Francesco, S. Schilt,
G. Di Domenico, J. Faist, P. Thomann, D. Hof-
stetter, Opt. Lett. 36, 3109 (2011).

[8] H. Schneider, H.C. Liu, S. Winnerl, O. Drachenko,
M. Helm, J. Faist, Appl. Phys. Lett. 93, 101114
(2008).

[9] A. Bu�az, M. Carras, L. Doyennette, A. Nedelcu,
X. Marcadet, V. Berger, Appl. Phys. Lett. 96,
172101 (2010).

[10] S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva,
N. Grandjean, F.H. Julien, Appl. Phys. Lett. 100,
181103 (2012).

[11] C. Jirauschek, T. Kubis, Appl. Phys. Rev. 1, 011307
(2014).

http://dx.doi.org/10.1126/science.264.5158.553
http://dx.doi.org/10.1088/0034-4885/64/11/204
http://dx.doi.org/10.1088/0034-4885/64/11/204
http://dx.doi.org/10.1063/1.2269408
http://dx.doi.org/10.1063/1.2210088
http://dx.doi.org/10.1063/1.3114418
http://dx.doi.org/10.1063/1.3114418
http://dx.doi.org/10.1063/1.3589355
http://dx.doi.org/10.1063/1.3589355
http://dx.doi.org/10.1364/OL.36.003109
http://dx.doi.org/10.1063/1.2977864
http://dx.doi.org/10.1063/1.2977864
http://dx.doi.org/10.1063/1.3409139
http://dx.doi.org/10.1063/1.3409139
http://dx.doi.org/10.1063/1.4707904
http://dx.doi.org/10.1063/1.4707904
http://dx.doi.org/10.1063/1.4863665
http://dx.doi.org/10.1063/1.4863665


352 M.V. Tkach et al.

[12] M. Lindskog, J.M. Wolf, V. Trinite, V. Liverini,
J. Faist, G. Maisons, M. Carras, R. Aidam, R. Os-
tendorf, A. Wacker, Appl. Phys. Lett. 105, 103106
(2014).

[13] J. Faist, Quantum Cascade Lasers, Oxford University
Press, Oxford 2013.

[14] R. Terazzi, J. Faist, New J. Phys. 12, 033045 (2010).

[15] F.R. Giorgetta, E. Baumann, M. Graf, Q. Yang,
C. Manz, K. Kohler, H.E. Beere, D.A. Ritchie, E. Lin-
�eld, A.G. Davies, Y. Fedoryshyn, H. Jackel, M. Fis-
cher, J. Faist, D. Hofstetter, J. Quantum Electron.
45, 1039 (2009).

[16] R. Betancourt-Riera, R. Rosas, I. Marín-Enriquez,
R. Riera, J.L. Marín, J. Phys. Condens. Matter
17, 4451 (2005).

[17] N.V. Tkach, Yu.A. Seti, Low Temp. Phys. 35, 556
(2009).

[18] M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska, Con-
dens. Matter Phys. 14, 43702 (2011).

[19] M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska, Acta
Phys. Pol. A 124, 94 (2013).

[20] M.V. Tkach, Ju.O. Seti, I.V. Boyko, O.M. Voit-
sekhivska, Rom. Rep. Phys. 65, 1443 (2013).

[21] E. Saczuk, J.Z. Kaminski, Phys. Status Solidi B 240,
603 (2003).

[22] F.H.M. Faisal, J.Z. Kaminski, E. Saczuk, Phys.
Rev. A 72, 023412 (2005).

[23] N. Mori, T. Ando, Phys. Rev. B 40, 6175 (1989).

[24] J.-J. Shi, B.C. Sanders, S.-H. Pan, Eur. Phys. J. B
4, 113 (1998).

[25] Z.W. Yan, X.X. Liang, Int. J. Mod. Phys. B 15,
3539 (2001).

[26] Z.W. Yan, S.L. Ban, X.X. Liang, Int. J. Mod.
Phys. B 17, 6085 (2003).

[27] B.H. Wu, J.C. Cao, G.Q. Xia, H.C. Liu, Eur.
Phys. J. B 33, 9 (2003).

[28] J.G. Zhu, S.L. Ban, Eur. Phys. J. B 85, 140 (2012).

[29] M.A. Stroscio, M. Dutta, Phonons in Nanostruc-
tures, Cambridge University Press, Cambridge 2001.

[30] L.D. Landau, E.M. Lifshitz, Quantum Mechanics:
Non-Relativistic Theory, Vol. 3, 3rd ed., Pergamon
Press, London 1977.

[31] D.F. Nelson, R.C. Miller, D.A. Kleinman, Phys.
Rev. B 35, 7770(R) (1987).

[32] A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical
Physics, Prentice Hall, Englewood Cli�s 1963.

[33] G.H. Davies, The Physics of Low-Dimensional Semi-
conductor, Cambridge University Press, Cambridge
1998.

http://dx.doi.org/10.1063/1.4895123
http://dx.doi.org/10.1063/1.4895123
http://dx.doi.org/10.1088/1367-2630/12/3/033045
http://dx.doi.org/10.1109/JQE.2009.2017929
http://dx.doi.org/10.1109/JQE.2009.2017929
http://dx.doi.org/10.1088/0953-8984/17/28/005
http://dx.doi.org/10.1088/0953-8984/17/28/005
http://dx.doi.org/10.1063/1.3170931
http://dx.doi.org/10.1063/1.3170931
http://dx.doi.org/10.5488/CMP.14.43702
http://dx.doi.org/10.5488/CMP.14.43702
http://dx.doi.org/10.12693/APhysPolA.124.94
http://dx.doi.org/10.12693/APhysPolA.124.94
http://dx.doi.org/10.1002/pssb.200301898
http://dx.doi.org/10.1002/pssb.200301898
http://dx.doi.org/10.1103/PhysRevA.72.023412
http://dx.doi.org/10.1103/PhysRevA.72.023412
http://dx.doi.org/10.1103/PhysRevB.40.6175
http://dx.doi.org/10.1007/s100510050357
http://dx.doi.org/10.1007/s100510050357
http://dx.doi.org/10.1142/S0217979201007804
http://dx.doi.org/10.1142/S0217979201007804
http://dx.doi.org/10.1142/S0217979203023653
http://dx.doi.org/10.1142/S0217979203023653
http://dx.doi.org/10.1140/epjb/e2003-00135-2
http://dx.doi.org/10.1140/epjb/e2003-00135-2
http://dx.doi.org/10.1140/epjb/e2012-20981-9
http://dx.doi.org/10.1103/PhysRevB.35.7770
http://dx.doi.org/10.1103/PhysRevB.35.7770

