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We present the studies of structural, electrical and magnetic properties of bulk Sn;_,_,Pb,CryTe mixed
crystals with chemical composition 0.18 < z < 0.35 and 0.007 < y < 0.071. The magnetometric studies indicate
that for the high Cr-content, y = 0.071, the alloy shows ferromagnetic alignment with the Curie temperature, Tc,
around 265 K. The CrsTeg clusters are responsible for the ferromagnetic order. At low Cr content, y = 0.01, a peak
in the ac magnetic susceptibility identified as the cluster-glass-like transition is observed at a temperature about
130 K. The cluster-glass-like transition is likely due to the presence of CraTes clusters in the samples with y ~ 0.01.
The transport characterization of the samples indicated strong metallic p-type conductivity with relatively high
carrier concentration, n > 102° cm™3, and carrier mobility, 2 > 150 cm?/(V s).
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1. Introduction

Semimagnetic semiconductors based on transition
metal doped IV-VI materials are of particular inter-
est due to the presence of carrier mediated ferromag-
netism with Curie temperature, T, as high as 200 K for
Ge1—,Mn, Te with z = 0.5 [1]. Chromium alloyed IV-VI
materials such as GeTe also show ferromagnetism with
transition temperatures as high as 160 K for thin lay-
ers [2] and 60 K for bulk crystals [3-5]. Other IV-VI ma-
terials are also of large interest in the field of possible ap-
plications in spintronics. Eggenkamp et al. investigated
magnetic properties of Sn;_,Mn,Te and showed ferro-
magnetism with critical temperatures changing from 3 K
up to 16 K for Mn-content, z, changing from 0.03 to 0.1,
respectively [6]. Chromium alloying of SnTe caused a
presence of clusters with a high content of chromium,
around z = 0.25, and the bulk matrix with randomly dis-
tributed Cr ions having the concentration equal to about
20% of the average composition z [7]. In the present
paper we investigate the problem of alloying the SnTe—
PbTe solid solutions with Cr ions. Our main goal was
to see whether SnTe-PbTe solid solution can improve
chromium solubility with respect to SnTe. We would
like to explore the main exchange mechanisms present in
the Sn;_,_,Pb,Cr,Te alloy.

2. Experimental

Bulk Sn;_,_,Pb,Cr,Te crystals were synthesized
with the wuse of a modified Bridgman method.
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The modifications of the growth procedure were similar
to those employed by Aust and Chalmers for the growth
of alumina crystals [8]. The as-grown crystals were cut
into 1 mm thick slices perpendicular to the growth di-
rection. The chemical composition of our crystals was
characterized with the use of an energy dispersive X-ray
fluorescence (EDXRF) spectrometer. This method al-
lows the determination of chemical composition of the
alloy with maximum relative errors in the molar frac-
tion of alloying elements, = and y, not exceeding 10% of
the estimated value. The results indicate that the chemi-
cal content of Sn;_,_,Pb,Cr,Te slices changes along the
ingot length with = changing continuously from 0.17 to
0.35, and y from roughly 0.01 in most of our samples up
to about 0.07. From all the slices we selected a few for
further studies.

3. Results

The structural quality of our samples was studied by
means of standard X-ray powder diffraction (XRD) tech-
nique using Siemens D5000 diffractometer at room tem-
perature. Exemplary diffraction patterns for two differ-
ent samples with different chemical compositions are pre-
sented in Fig. 1. The XRD results were analyzed with the
use of the Rietveld refinement method. The diffraction
patterns observed for the samples with low Cr-content,
y ~ 0.01, show features characteristic of a SnTe phase
only. The addition of Pb to the alloy does not lower
its structural quality. The increase of Cr-content in the
alloy (y ~ 0.07) leads to appearance of additional diffrac-
tion patterns, which could not be directly assigned to any
known Sn-Pb-Cr-Te phases. The lattice parameter a, cal-
culated using the Rietveld method (see the inset to Fig. 1)
is close to the value for SnTe crystals, i.e., a = 6.327 A [9].
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Fig. 1. Exemplary diffraction patterns obtained for the

selected Snj_,_,Pb,Cr,Te crystals with different chem-
ical composition. The inset shows the lattice parameter
a as a function of the Pb content, x.

The a(z) changes according to the Vegard law (see the
inset to Fig. 1). It is a signature that the synthesis of the
SnTe-PbTe alloy was successful.

Hitachi SU-70 Analytical ultra high resolution field
emission scanning electron microscope (SEM) coupled
with Thermo Scientific NSS 312 energy dispersive X-ray
spectrometer (EDS) equipped with silicon drift detector
was used in order to study the chemical homogeneity
of our Sn;_,Cr,Te samples. A series of SEM images
and EDS maps were measured in order to identify the
second phase observed during XRD studies. Exemplary
SEM/EDS results are presented in Fig. 2. These maps
show the presence of mostly Cr and Te ions in the clus-
ters. The chemical composition measurements done with
the use of a EDS microprobe reveal that the stoichiome-
try ratio of Cr to Te ions is similar in the samples with
y ~ 0.01 and 0.07 and varies from 59% to 69%. That
indicates possible CryTes or CrsTeg clusters.

The electrical transport of the Sny_,_,Pb,Cr,Te crys-
tals was studied with the use of a standard dc cur-
rent six contact Hall effect technique in a magnetic
field B = 1.5 T and at temperatures from 4.3 K
up to 300 K. The results indicate that all our samples
are p-type semiconductors with high carrier concentra-
tion, p ~ 10%° cm—3, and relatively low carrier mobility,
p < 700 cm?/(V s). The metallic resistivity vs. tempera-
ture relation, p..(T) typical of degenerated semiconduc-
tor, is observed. The Hall carrier concentration does not
show changes with the temperature. The u(T) depen-
dence for all our samples does show a decrease of p with
increasing T, a feature typical of the reduction of the
mobility due to phonon scattering.
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Fig. 2. Results of the SEM /EDS measurements includ-
ing: SEM image with EDS spectra measured at selected
points followed by EDS maps showing the distribution
of alloying elements.

Magnetic properties of our Sn;_,—,Cr,Eu, Te samples
were studied with the use of dynamic susceptibility and
static magnetization measurement techniques with the
use of LakeShore 7229 susceptometer/magnetometer sys-
tem. The temperature dependence of the ac magnetic
susceptibility, x4, was measured over the broad temper-
ature range from 4.3 K up to 300 K. During the measure-
ments the sample was placed in an alternating magnetic
field with frequency f equal to 625 Hz and amplitude
B,. = 1 mT. The temperature dependence of the real
part of the ac magnetic susceptibility, Re(xac)(T), for a
few selected Snj_,—,Pb,CryTe crystals is presented in
Fig. 3. The results indicate a completely different be-
havior of the samples with Cr content around y = 0.01
and 0.07. The magnetic susceptibility for the sample
with y = 0.07 has values more than an order of mag-
nitude higher than for y = 0.01. The temperature de-
pendence of the magnetic susceptibility for the samples
with y = 0.07 shows a paramagnet-ferromagnet transi-
tion located at temperatures close to 300 K. The Curie
temperature, determined from the inverse of the mag-
netic susceptibility has a value of about 266 + 10 K.
The ferromagnetic alignment of Cr-ions in this sample
is related to the presence of Cr-Te clusters detected with
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Fig. 3. The temperature dependence of the ac mag-
netic susceptibility for the selected Sni_;_,Pb;Cr,Te
samples with different chemical content, z and y.

SEM/EDS technique. CrsTes, CryTes, and CrTes phases
show the Curie temperature of about 190-245 K [10],
170 K [11] and 18 K [12], respectively. The other known
phases are CrTe [13], Cr;Tes [14, 15], Cr5Tes [15], and
CrsTey [15, 16] with the Curie temperatures well above
300 K. The literature data show that the most probable
Cr—Te-related clusters that could be responsible for the
ferromagnetic order in this sample are CrsTeg clusters.
The difference between the T observed for our samples
(266 K) and the values reported for CrsTeg (190-245 K)
may be due to the fact that the ferromagnetic clusters are
placed in diamagnetic Sn-Pb-Te matrix. Furthermore,
in the present study the clusters may not have proper
stoichiometry; that may cause changes in the Curie tem-
perature. Below approximately 120 K the magnetic sus-
ceptibility decreases with temperature. This behavior is
incomprehensible. A ferromagnet should maintain a high
value of the magnetic susceptibility over the entire tem-
perature range below the Curie temperature. The reduc-
tion of the magnetic susceptibility below 120 K indicates
the possibility of occurrence of a cluster-glass state at low
temperature.

The magnetic susceptibility for the Sny_,_,Pb,Cr,Te
samples with y =~ 0.01 shows the presence of
a well defined peak at temperatures around 120-
140 K. In order to determine the type of the ob-
served magnetic state the detailed measurements of
the Re(xac)(T) dependence with the use of an al-
ternating magnetic field of different frequency f in
the range from 7 Hz to 9980 Hz were performed.
The Re(xac)(T) dependence shifted towards higher tem-
peratures with increasing f, in a way similar as for the
Gei_gy—ySnyMn,Te (Refs. [17-19]), Ge;_,_,CryEu,Te
(Refs. [4, 5]), and Ge; _,—,Mn,Eu, Te crystals (Ref. [20]).
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That effect was identified as the appearance of a cluster-
spin-glass freezing of the CryTes grains.

The measurements of magnetization vs. magnetic
field, M(B), were performed up to B = 9 T. We used
the Weiss extraction method included in the LakeShore
7229 magnetometer system. Isothermal magnetic hys-
teresis loops were measured at selected temperatures,
T < 200 K. Exemplary M (B) curves obtained for the se-
lected Sny_;_,Pb,Cr,Te crystals are presented in Fig. 4.
The results indicate that in case of the samples with y ~
0.01 the magnetization is much lower than would follow
from the difference in composition only. The Brillouin-
like shape of the M(B) curve and a narrow hysteresis
loop is observed for the sample with y =~ 0.07, a feature
typical of the ferromagnetic material.
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Fig. 4. Exemplary magnetic field dependences
of the magnetization obtained for the selected

Sni_,yPb,CryTe crystals with different chemical
composition, z and y, obtained at 7' = 4.5 K.

4. Conclusions

The presence of CroTes and CrsTeg clusters
is responsible for the magnetic properties of the
Sni_y—yPb,Cr,Te crystals with y ~ 0.01 and y ~ 0.07,
respectively. The SnTe-PbTe solid solution synthesis is
successful but it does not improve the solubility of Cr in
IV-VI matrix. On the contrary to Sn;_,Cr,Te alloy the
Sni_4—yPb,Cr,Te crystal synthesis produces clusters of
typical Cr—Te compounds rather than clusters of the IV—
VI host materials with high content of Cr.
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