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Relativistic Paschen–Back Effect
for the Two-Dimensional H-Like Atoms
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The classification of states based on good quantum numbers for the two-dimensional Coulomb problem is
proposed. The first order magnetic energy corrections are calculated using exact field-free analytic solutions of
the Dirac equation as a zero-order approximation.
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1. Introduction

Low-dimensional quantum systems have been the focus
of extensive theoretical investigations in the last decades.
Technological advances in semiconductor physics and re-
cent developments in nanostructure technology provide
techniques of creating low-dimensional structures like su-
perlatices, quantum dots, quantum wires, or quantum
wells [1]. The most representative analogues of hydrogen-
-like systems in the world of semiconductors are hydro-
genic donors being the bound states of conduction elec-
tron and a donor impurity [2] and the Wannier–Mott
excitons formed by an electron and a hole [3]. After
the renormalization of Coulomb potential by introduc-
ing of dielectric constant and replacing the electron mass
by effective one, the atomic objects in two-dimensional
structures can be treated as 2D hydrogen-like atoms.
At this stage, the 2D hydrogen problem determines a
leading approximation for study of hydrogen type bound
states in extreme anisotropic crystals, in which the z-
component of a diagonal anisotropic mass tensor is much
larger than the two remaining ones [4]. The non- and
weak-relativistic [5] approaches are usually considered as
sufficiently good approximations to the realistic descrip-
tion of the 2D objects in solid matter. However, in a
searching of both spin and relativistic effects the com-
plete relativistic theory based on the Dirac equation is
inevitable. The first-order relativistic correction for wide
range of magnetic fields have been calculated recently in
the framework of direct perturbation theory (DPT) [6].

The aim of this paper is the calculation of the first-
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-order magnetic energy correction using fully relativistic
wave functions as a zero-order approximation in the per-
turbation method.

2. Exact solution for field-free atom

The purpose of this section is the analysis of integrals
of motion of the two-dimensional relativistic hydrogen
atom and classification of the states based on good quan-
tum numbers. These goals are achieved by introducing,
into Dirac Hamiltonian, Hermitian operators associated
with conserved quantities. The quantum mechanical two-
-dimensional central problem, with the Coulomb poten-
tial −Z/ρ has been solved by many authors. In the
nonrelativistic theory the analytic solution can be de-
rived in strict analogy to the three-dimensional Coulomb
problem, after the separation of the Schrödinger equa-
tion in polar coordinates [7, 8] or in parabolic coordi-
nates [9]. The solution of the relativistic 2D hydrogen-
-like problem has been obtained in the framework of the
two-component approach [10]. Although the formalism
based on the two-dimensional representation of gamma
matrices gives correct formula for energy levels, it does
not provide a good background for analysis of other ob-
servables. Alternatively, standard Dirac–Pauli represen-
tation of the Dirac matrices can be used. The four-
-component analytic solution of the Dirac equation with
the Hamiltonian

H = cα ·p + βc2 − Z

ρ
(1)

in two spatial dimensions has been obtained by Guo
et al. [11]. These authors have investigated two decoupled
subspaces of the energy eigenstates

Ψ (1) =




f1(ρ)e i (µ−1/2)φ

0
0

ig1(ρ)e i (µ+1/2)φ


 ,

(439)
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Ψ (2) =




0
f2(ρ)e i (µ+1/2)φ

ig2(ρ)e i (µ−1/2)φ

0


 , (2)

where µ is the eigenvalue of the z-component of the total
angular momentum jz defined as:

jz = lz +
1
2
σ′z , (3)

where

lz = − i∂/∂φ, σ′z =

[
σ′z 0
0 σz

]
. (4)

In nonrelativistic limit the states of the form (2) describe
an electron with spin up and down, respectively. Without
any additional information about other conserved quan-
tities the radial amplitudes of these two decoupled states
have to be determined by two different sets of radial equa-
tions [11]. One of the important aspects of the presented
approach is the possibility of determining all radial func-
tions using one two-component radial equation.

We have find that two linearly-independent states (2)
are the eigenstates of an operator

P = βσ′z , (5)
which commute with the Hamiltonian (1). It follows from
(5) that P is an involution (P 2 = 1) and has two eigen-
values η = ±1. In the nonrelativistic limit the different
signs of η correspond to states with opposite spin direc-
tions. Moreover, it can be directly verified, by computing
relevant commutators, that beyond operators jz and P
there exists an operator K:

K = β

(
σ′zlz +

1
2

)
, (6)

which commutes with H and both operators P, jz. The
eigenvalue of K can be referred to as the Dirac quantum
number κ. To determine a physical meaning of quantum
number κ, let us derive a relation between κ and µ. If
we consider the square of K we obtain

K2 = (σ′zlz)
2 + σ′zlz +

1
4

=
(

lz +
1
2
σ′z

)2

= j2
z , (7)

which means that eigenvalues of K satisfy the relation
κ = ±|µ| . (8)

We note that operators K, P and jz are not independent.
They fulfil the relation

K = Pjz , (9)
which gives a similar relation for eigenvalues

κ = µη . (10)
It appears from (10) that the upper and lower signs
in (8) distinguish between two different physical situa-
tions, when, in nonrelativistic limit, spin is parallel or
antiparallel to the total angular momentum.

Now we are in a position to solve the 2D Coulomb prob-
lem in a strict analogy to 3D case and perform the clas-
sification of states free of nonrelativistic quantum num-
bers. To this end we introduce to the Dirac equation

the quantum numbers associated with the complete set
of commuting operators (H, K, jz).

In atomic units and polar coordinates (ρ, φ) Hamilto-
nian (1) can be written in the form

H = c

(
αρπρ +

i
ρ
αρβK

)
+ βc2 − Z

ρ
, (11)

where

αρ =

[
0 σ · ρ̂

σ · ρ̂ 0

]
, σ · ρ̂ =

[
0 e− iφ

e iφ 0

]
,

πρ = − i
(

∂

∂ρ
+

1
2ρ

)
. (12)

In the representation in which operators H, jz and K
are diagonal, energy levels are determined by radial part
of the wave function only. The pertinent radial Dirac
equation takes the form[

c

(
αρπρ +

iκ
ρ

αρβ

)
+ βc2 − Z

ρ

]
R = WR . (13)

Since αρ and β fulfil the relations
α2

ρ = β2 = 1 , αρβ + βαρ = 0 , (14)
they can be represented by two-dimensional Hermitian
matrices

αρ =

[
0 − i
i 0

]
, β =

[
1 0
0 −1

]
. (15)

According to Eq. (15) the radial function R has two com-
ponents, which for convenience can be taken in the form

R(ρ) =
1

ρ1/2

[
F (ρ)

G(ρ)Z/c

]
. (16)

Introducing two new variables

r = Zρ , E =
W − c2

Z2
(17)

and substituting (15) into (13) leads to the wave equation
for the electron moving in the two-dimensional Coulomb
field in the form of the pair of κ-dependent radial equa-
tions

dG

dr
+

κ

r
G +

(
1
r

+ E

)
F = 0 , (18)

dF

dr
− κ

r
F −

[
λ

(
1
r

+ E

)
+ 2

]
G = 0 , (19)

where λ = (Z/c)2.

Since asymptotic solutions of Eqs. (18), (19) decay ex-
ponentially, we try to find the solution of radial Eqs. (18)
and (19) in the form

F = rγ e−αr
∞∑

i=0

air
i, G = rγ e−αr

∞∑

i=0

bir
i, (20)

where
α =

√
−E(2 + λE) . (21)

Substituting expansions (20) into Eqs. (18), (19) we ob-
tain the linear relations between the expansion coeffi-
cients
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(i + γ − κ) ai − λbi = (Eai−1 − αbi−1)
α

E
, (22)

ai + (i + γ + κ) bi = −Eai−1 + αbi−1 . (23)
For i = 0, we have

(γ − κ) a0 − λb0 = 0, a0 + (γ + κ) b0 = 0 . (24)
Since both a0 and b0 are different from zero, the secular
determinant must vanish, which leads to

γ = ±
√

κ2 − λ , (25)
and

b0 = − a0

γ + κ
. (26)

For i > 0, the expanding coefficients can be calculated it-
eratively from the relations (22) and (23). The condition
of square integrability of the wave function allows only
the upper sign in Eq. (25) and requires the termination
of power series (20) at a some power n′:

an′+1 = 0 , bn′+1 = 0 , an′ 6= 0 , bn′ 6= 0 , (27)
which leads to the condition

Ean′ = αbn′ , (28)
and finally to the equation for E:√

−E (2 + λE) (n′ + γ) = 1 + λE . (29)
Solving this equation and substituting

γ =
√

κ2 − λ , (30)
we obtain

E =
1
λ

[(
1 +

λ

(n′ +
√

κ2 − λ)2

)−1/2

− 1

]
. (31)

In order to compare the expression (31) with nonrela-
tivistic one, we define the principal quantum number as
follows:

n = n′ + |κ|+ 1/2 . (32)
Since n′ ≥ 0 we must have |κ| ≤ (n− 1/2). However, for
n′ = 0, the number κ must have positive value only. The
absence of the κ < 0 for n′ = 0 follows from Eqs. (26)
and (28), which both imply

(γ + κ) > 0 . (33)
According to (30), γ is a real number smaller than |κ|
and inequality (33) can be satisfied only if κ is positive.
Therefore κ must fulfil the relation

|κ− 1
2
| ≤ n− 1 . (34)

Finally, energy levels in hartree are given through

Enκ =

[(
1 +

λ

(n− |κ| − 1/2 +
√

κ2 − λ)2

)−1/2

− 1

]

/
λ. (35)

In the nonrelativistic limit (λ → 0) we obtain

En = − 2
(2n− 1)2

. (36)

The complete spin-space dependence of wave functions
is given by

Ψnκµ(r, φ) =
1

r1/2

[
Fnκ(r)Ωκµ(φ)

Gnκ(r)Ω−κµ(φ)

]
, (37)

where
n = 1, 2, 3, . . . , (38)

κ = 1/2, −1/2, 3/2, −3/2, . . . , (n− 1/2), (39)
and

µ = ±κ . (40)
The cylindrical spinor Ωκµ(φ) is defined as:

Ωκµ(φ) =

[
κ+µ
2µ e i (µ−1/2)φ

−κ+µ
2µ e i (µ+1/2)φ

]
, (41)

and radial amplitudes have the form

Fnκ(r) = rγ e−αr

n−|κ|−1/2∑

i=0

air
i, (42)

Gnκ(r) = rγ e−αr

n−|κ|−1/2∑

i=0

bir
i, (43)

with coefficients determined by relations (22) and (23).
Alternatively, in a similar way as in 3D case, the so-

lution of radial Eqs. (18) and (19) may be expressed in
terms of confluent hypergeometric functions

Fnκ(r) = rγ e−αr

[(
κ +

1
α

)
F1(r)− n′F2(r)

]
, (44)

Gnκ(r) =
E

α
rγ e−αr

[(
κ+

1
α

)
F1(r) + n′F2(r)

]
, (45)

where
F1(r) = 1F1 (−n′, 2γ + 1; 2αr) ,

F2(r) = 1F1 (1− n′, 2γ + 1; 2αr) . (46)
In order to introduce the classification scheme based

on spectroscopic notation it is useful to define an orbital
quantum number as

l =
∣∣∣∣κ−

1
2

∣∣∣∣ . (47)

Let us note that this quantity according to (34) satisfies
the inequality l ≤ (n− 1).

In Table I we display, as an example, the lowest few
states with principal quantum numbers n = 1, 2, 3. We
can see that for a given n, the states with the same |κ| are
degenerate and the lowest energy corresponds to minimal
value of |κ|. According to (40), for each value of κ there
are two possible values of µ. Therefore, the degree of
degeneracy of energy levels is 2 for κ = (n − 1/2) and 4
for |κ| < (n− 1/2), respectively. It is worth to point out
that, in a contrast to the three-dimensional case, due to
the equality |κ| = |µ|, the states with |µ| < |κ| do not
occur.
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TABLE I
Relativistic quantum numbers, spectroscopic notation and energies in hartree for
bound states with n = 1, 2, 3 for the two-dimensional hydrogen atom. The values
of energy are computed with c = 137.03599976 [14].

n n′ = n− |κ| − 1/2 κ l =
∣∣κ− 1

2

∣∣ Notation Energy
1 0 1/2 0 1s1/2 −2.000106514052

2 1 1/2 0 2s1/2 −0.222234057055

2 1 −1/2 1 2p1/2 −0.222234057055

2 0 3/2 1 2p3/2 −0.222223537086

3 2 1/2 0 3s1/2 −0.080002897124

3 2 −1/2 1 3p1/2 −0.080002897124

3 1 3/2 1 3p3/2 −0.080000624824

3 1 −3/2 2 3d3/2 −0.080000624824

3 0 5/2 2 3d5/2 −0.080000170405

TABLE II
First-order magnetic corrections E(1) to the energies for states with principal quantum numbers n = 1, 2, 3
of the two-dimensional relativistic hydrogenic atoms. The upper and lower signs in the front of E(1) are
referred to the two values of µ = ±|κ|, respectively. In the last column nonrelativistic values of linear
magnetic corrections are given.

n′ κ State E(1) E
(1)
N

Z = 1 Z = 20 Z = 40 Z = 60

0 1/2 1s1/2 ±0.49997337 ±0.48911266 ±0.45297650 ±0.37072192 ±0.5

3/2 2p3/2 ±0.99999112 ±0.99644147 ±0.98566260 ±0.96733798 ±1

5/2 3d5/2 ±1.49999467 ±1.49786813 ±1.49145055 ±1.48068021 ±1.5

1 1/2 2s1/2 ±0.49999704 ±0.49879035 ±0.49478025 ±0.48576638 ±0.5

−1/2 2p1/2 ∓0.00000296 ∓0.00120965 ∓0.00521975 ∓0.01423362 0
3/2 3p3/2 ±0.99999680 ±0.99871795 ±0.99482266 ±0.98815866 ±1

−3/2 3d3/2 ±0.49999680 ±0.49871795 ±0.49482266 ±0.48815866 ±0.5

2 1/2 3s1/2 ±0.49999894 ±0.49956759 ±0.49818020 ±0.49536264 ±0.5

−1/2 3p1/2 ∓0.00000107 ∓0.00043241 ∓0.00181980 ∓0.00463736 0

3. Linear Paschen–Back effect

Let us consider now the Dirac Hamiltonian describing
transversal motion of an electron around a fixed center of
the Coulomb field with charge Z and in a static uniform
magnetic field. In atomic units the relativistic Hamilto-
nian can be written in the form

H = cα · (p + A) + βc2 − Z

ρ
. (48)

Taking into account the standard four-dimensional
Dirac–Pauli representation of the Dirac matrices and the
vector potential A = B×ρ/2 for B = Bẑ perpendicular
to the plane of transversal motion of the electron, we can
write

α · (p + A) = αρpρ + iαρσ
′
z

(
lz
ρ

+
Bρ

2

)
. (49)

Introducing into Hamiltonian both operators P and K,
defined in a previous section, we obtain

H = c

(
αρπρ +

i
ρ
αρβK +

i
2
BραρβP

)
+ βc2− Z

ρ
(50)

and appropriate radial Dirac equation in the form[
c

(
αρπρ +

iκ
ρ

αρβ +
iηB

2
ραρβ

)
+ βc2 − Z

ρ

]
R

= WR . (51)

Substituting (15) into (51) and changing variables ac-
cording to (16) and (17) and introducing a new variable
B := B/Z2 leads to the wave equation, for the elec-
tron moving in the superposition of the two-dimensional
Coulomb field and constant homogeneous magnetic field,
in the form of the pair of κ- and η-dependent radial equa-
tions

dG
dr

+
(

κ

r
+

1
2
ηBr

)
G +

(
1
r

+ E

)
F = 0 , (52)
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dF
dr

−
(

κ

r
+

1
2
ηBr

)
F−

[
λ

(
1
r

+E

)
+ 2

]
G = 0 . (53)

The complete spin-space description of eigenfunctions is
the same as for the field-free atom. The only difference
is in dependence of radial functions on both quantum
numbers κ and µ (η = κ/µ). In consequence, magnetic
energy shift may depend on the symmetry of the states.
We investigate this problem in the first-order perturba-
tion approach. In order to apply the perturbation for-
malism we rewrite Eqs. (52) and (53) in 2 × 2 matrix
form(

h(0) + Bh(1) − ES
)

Φ = 0 , (54)

where

h(0) =

[
−1/2 −d/dr − κ/r

d/dr − κ/r −(2 + λ/r)

]
, (55)

h(1) =

[
0 −ηr/2

−ηr/2 0

]
, S =

[
1 0
0 λ

]
,

Φ(r) =

[
F(r)
G(r)

]
. (56)

Perturbation expansions for energy and wave function

E =
∞∑

i=0

E(i)Bi, Φ =
∞∑

i=0

Φ(i)Bi (57)

lead to the following perturbation equations:

h(0)Φ(n) + h(1)Φ(n−1) −
n∑

i=0

E(i)SΦ(n−i) = 0 . (58)

The zero-order equation (n = 0)(
h(0) − E(0)S

)
Φ(0) = 0 (59)

is equivalent to the system of radial Eqs. (18) and (19)
for field-free atom. Under the condition of orthogonality〈

Φ(0), SΦ(i)
〉

= 0 , (60)

for i > 0, the n-th order energy correction can be written
in the form

E(n) =
〈Φ(0), h(1)Φ(n−1)〉
〈Φ(0), SΦ(0)〉 . (61)

The calculation of the first-order energy correction

E(1) = −η
〈F, rG〉

〈F, F 〉+ λ〈G,G〉 (62)

can be performed in closed form using radial functions
(44) and (45). For n′ = 0 (κ = |µ|), we obtain

E(1) =
µ

4κ
(2γ + 1) . (63)

Taking into account that hypergeometric functions (46)
depend only on |κ|, the dependence of functions F and
G on the sign of κ is due to the factor (κ + 1/2) in (44)
and (45). It means that for n′ ≥ 0 the first-order energy
corrections have the general form

E(1) = −η
aκ + b

gκ + d
= µA1 +

κ

µ
A2 , (64)

where

A1 =
ad− bg

κ2g2 − d2
, A2 =

bd− κ2ag

κ2g2 − d2
, (65)

and we have taken into account that η = µ/κ = κ/µ. Ra-
dial integrals a, b, g, d depend only on κ2 and n′ and are
given in Appendix. It appears from Eqs. (63) and (64)
that the κ- and µ-degeneracy of field-free levels is com-
pletely removed by external magnetic field.

Since in nonrelativistic limit λ = 0 and G =
1
2

(
dF/dr − κ

r F
)
we have 〈F, rG〉 = − 1

2

(
κ + 1

2

) 〈F, F 〉
and in consequence

E
(1)
N =

η

2

(
κ +

1
2

)
=

1
2

(
µ +

µ

2κ

)
. (66)

Expressing the relativistic quantum numbers µ and κ
by the nonrelativistic quantum numbers m and ms (the
eigenvalues of lz and sz = 1

2σz) we have µ = m+ms and
µ
2κ = ms, and finally

E
(1)
N = (m + 2ms) /2. (67)

The nonrelativistic formula (67) may be also derived di-
rectly from the Schrödinger–Pauli equation. It has the
same form as in the 3D case (see for example [12]) and
is independent of Z. The independence of Z of the
correction (67) follows from the simple scaling relation
E(Z,B) = Z2E(1, B/Z2) fulfilled by the nonrelativistic
energy [13].

Let us consider the Z-dependence of the relativistic
correction to the Paschen–Back effect, defined as

δE = E(1) − E
(1)
N . (68)

Taking into account Eqs. (63) and (66), we can find
the analytic formula for the correction (68) for states
1s1/2, 2p3/2, 3d5/2, . . . , corresponding to the lowest states
with κ > 0 (n′ = 0):

δE =
µ

2|µ|
(√

µ2 − (Z/c)2 − |µ|
)

. (69)

Since the minimal absolute value of µ is 1/2, the condi-
tion µ2 − (Z/c)2 > 0 leads to the restriction for pos-
sible values of the atomic numbers Z . Z0, where
Z0 ≈ 137/2. For ground state (µ = −1/2) and for Z
close to Z0 the first term in (69) is negligible in com-
parison with |µ| and the relativistic correction takes the
maximal value δE ≈ 0.25, which gives a half of the
nonrelativistic Paschen–Back shift. For excited 2p3/2

and 3d5/2 states the influence of the relativity on the
behavior of the Paschen–Back effect is less pronounced
than for the states 1s1/2. Nevertheless, one can also ob-
serve the Z-dependence of the relativistic Paschen–Back
shifts. For other states the relativistic corrections to the
Paschen–Back effect can be calculated numerically as a
difference between Eqs. (64) and (67). Table II lists the
first-order energy shifts of levels corresponding to states
with n = 1, 2, 3, presented in Table I. The maximal ab-
solute error of each value does not exceed ±1 in the last
digit. We can see that linear energy corrections E(1)

strongly depend on the charge of the Coulomb center Z

and sign of both quantum numbers κ and µ. Since E
(1)
N

is independent of Z, the observed Z-dependence of E(1)

can be regarded as a purely relativistic effect.
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4. Concluding remarks

We have presented in this paper exact analytic solu-
tion of 2D Coulomb problem by introducing good quan-
tum numbers into wave equation, and applying standard
power series expansion method. The problem of energy
spectrum is solved exactly in close analogy to the 3D
case. Moreover, the wave functions are classified accord-
ing to the complete set of constants of motion without ap-
peal to the nonrelativistic limit and determined by one κ-
dependent system of radial equations. Utilizing obtained
solutions, we have investigated the first-order magnetic
properties of the two-dimensional hydrogenic atoms. The
results obtained in this work indicate that the relativistic
effects are important and sharply increase with growing
value of atomic number Z. The nonrelativistic energy
shifts caused by the first-order magnetic field interaction
are constant in this case. We expect a significant change
of magnetic properties due to relativity also in higher
orders of magnetic field interaction. The influence of rel-
ativity on the behavior of 2D hydrogenic atoms in mag-
netic field of arbitrary strength will be investigated in the
forthcoming paper.

Appendix

Radial integrals appearing in the expression of the first-
-order magnetic energy correction (64) are defined as fol-
lows:

a =
2E

α2
K1 , b =

E

α

[(
κ2+

1
α2

)
K1 − n′2K2

]
, (A.1)

g =
2
α

(
1 +

λE2

α2

)
I1 + 2n′

(
λE2

α2
− 1

)
I12 , (A.2)

d =
(

1 +
λE2

α2

)[(
κ2 +

1
α2

)
I1 + n′2I2

]

+
2n′

α

(
λE2

α2
− 1

)
I12 , (A.3)

where

Ki =
∫ ∞

0

r2γ+1 e−2αrF 2
i dr ,

Ii =
∫ ∞

0

r2γ e−2αrF 2
i dr , (A.4)

where i = 1, 2 and

I12 =
∫ ∞

0

r2γ e−2αrF1F2dr . (A.5)
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