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A correspondence between Nottale’s scale relativity model and Cresson’s mathematical procedures is analyzed.
It results that the “synchronization” of the movements at different scales (fractal scale, differential scale etc.)
gives conductive type properties to the fractal fluid, while the absence of “synchronization” is inducing properties
of convective type. The behavior of a conductive fractal fluid is illustrated through the numerical simulation of
plasma diffusion that is generated by laser ablation. Rotational and irrotational convective behaviors of a fractal
fluid are established. Particularly, at Compton spatial and temporal scales, the irrotational behavior implies the
standard Schrödinger equation.
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1. Introduction

The Nottale scale relativity (SR) model [1–8] is based
both on the fractal space-time concept (the fractal space-
-time is also introduced by Ord [9] and El Naschie
[10–15]) and on a generalization of Einstein’s principle
of relativity to scale transformations. In other words,
the SR model is built by completing the standard laws of
classical physics (motion in space-time) by new scale laws
(“the space-time resolution are used as intrinsic variables,
playing for the scale transformation the same role as
played by velocities for motion transformation” [16–19]).

Three scales of interaction of SR were developed: (i) A
“Galilean” version corresponding to the standard fractals
with constant fractal dimensions [20–22] and which in-
volves quantum mechanics [1, 2, 16, 17, 23–25]; (ii) a spe-
cial scale-relativistic version which implies the high en-
ergy physics [2, 4–6]; (iii) a “general scale-relativistic”
version which implies the cosmology [2, 3, 26].

In the present paper the correspondence between the
Nottale SR model [1–8, 16–19, 27, 28] and Cresson math-
ematical procedures [29–39] is analyzed. Thus, in Sect. 2
a short reminder of the Nottale SR model (mathematical
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fundaments and physical principles) is given. Then, typ-
ical time-dependent fractal systems are considered: frac-
tal fluid of conductive type behavior, with applications
in numerical simulations of plasma expansion (Sect. 3),
and fractal fluid of convective type behavior for rotational
and irrotational motions (Sect. 4).

2. A short reminder of the Nottale scale
relativity theory in correspondence

with Cresson’s mathematical procedures

Let us suppose that the motion of particles take
place on continuous but non-differentiable curves (frac-
tal curves). The non-differentiability, according with
Cresson’s mathematical procedures [29–36] and Nottale’s
physical principles [1–8, 16–19, 27, 28] implies the follow-
ings:

(i) a continuous and a non-differentiable curve (or al-
most nowhere differentiable) is explicitly scale dependent,
and its length tends to infinity, when the scale interval
tends to zero. In other words, a continuous and non-
-differentiable space is fractal, in the general meaning
given by Mandelbrot to this concept [20, 21];

(ii) there is an infinity of fractals curves (geodesics)
relating any couple of its points (or starting from any
point), and this is valid for all scales;

(157)
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(iii) the breaking of local differential time reflection
invariance. The time-derivative of a function F can be
written twofold

dF

dt
= lim

dt→0

F (t + dt)− F (t)
dt

= lim
dt→0

F (t)− F (t− dt)
dt

. (1)

Both definitions are equivalent in the differentiable case.
In the non-differentiable situation these definitions fail,
since the limits are no longer defined. “In the framework
of scale relativity, the physics is related to the behav-
ior of the function during the “zoom” operation on the
time resolution δt, here identified with the differential el-
ement dt (“substitution principle”), which is considered
as an independent variable. The standard function F (t)
is therefore replaced by a fractal function F (t, dt) (for
details see [29–36]) explicitly dependent on the time res-
olution interval, whose derivative is undefined only at the
unobservable limit dt → 0” [16, 17]. As a consequence,
this leads us to define the two derivatives of the frac-
tal function as explicit functions of the two variables t
and dt,

d+F

dt
= lim

dt→0+

F (t + dt, dt)− F (t, dt)
dt

, (2a)

d−F

dt
= lim

dt→0−

F (t, dt)− F (t− dt, dt)
dt

. (2b)

The sign “+” corresponds to the forward process and “−”
to the backward process;

(iv) the differential of a fractal function F (t, dt) can
be expressed as the sum of two differentials, one which
is not scale-dependent, dF ′(t), and the other dependent
on it, dF ′′(t, dt), therefore [29–36]

dF (t, dt) = dF ′(t) + dF ′′(t, dt). (3)

Particularly, the differential of the generalized coordi-
nates, d±X(t, dt), can be decomposed as follows:

d±X(t, dt) = d±x(t) + d±ξ(t, dt), (4a,b)
where d±x(t) is the “classical part” and d±ξ(t, dt) is the
“fractal part”. Starting from here, multiplying by dt−1

and using the substitutions

V ± =
d±X

dt
, v± =

d±x

dt
, u± =

d±ξ

dt
, (5a–c)

we obtain the velocity field
V ± = v± + u±; (6a,b)

(v) the fractal part of F , i.e. F ′′, satisfies the relation
[29–32]:

|F ′′(t)− F ′′(t′)| ≈ |t− t′|δ, (7)
where δ depends on the fractal dimension DF (for detail
see [30]).

Particularly, the differential of the “fractal part” of
d±X, becomes

d±ξi ∼ dt
1

DF (8a,b)
or more, as an equality relation

(
d±ξi

λ

)
=

(
dt

τ

) 1
DF

. (9a,b)

Written as

d±ξi =
λ

τ

(
dt

τ

)(
1

DF

)
−1

dt, (10a,b)

Eqs. (9a,b) imply the temporal scales δt and τ , and the
length scale λ, respectively. The significances of the time
dt and τ result from the random walk (Brownian motion)
or its generalization, Levy motion [2, 10]. The differential
time dt is identified with the resolution time (“substitu-
tion principle” [1–8]), δt ≡ dt, while τ corresponds to the
fractal–non-fractal transition time. λ is a characteristic
length, for example of Planck’s or de Broglie’s type (for
details see [2, 10]);

(vi) by the relation (10a, b) the velocity field V i
±

becomes

V i
± = vi

± + ui
± = vi

± +
λ

τ

( τ

dt

)1−
(

1
DF

)

. (11a,b)

The transition scale τ yields two distinct behaviors of
the speed, depending on the resolution at which it is con-
sidered, since V i

± → vi
± when dt À τ , and V i

± → ui
±,

when dt ¿ τ ;
(vii) the local differential time reflection invariance is

recovered by combining the two derivatives, d+/dt and
d−/dt, in the complex operator [2–8, 29–36, 27, 28]

d̂
dt

=
1
2

(
d+ + d−

dt

)
− i

2

(
d+ − d−

dt

)
. (12)

We call this procedure “an extension by differentiability”
(Cresson’s extension — for detail see [33–36]).

Applying this operator to the “position vector” yields
a complex speed

V =
d̂X

dt
=

1
2

(
d+X + d−X

dt

)

− i
2

(
d+X − d−X

dt

)

=
V + + V −

2
− i

V + − V −
2

=
1
2
[
(v+ + v−) + (u+ + u−)

]

− i
2
[
(v+ − v−) + (u+ − u−)

]
= V − iU (13)

with

V =
V + + V −

2
=

1
2
[
(v+ + v−) + (u+ + u−)

]
, (14a)

U =
V + − V −

2
=

1
2
[
(v+ − v−) + (u+ − u−)

]
. (14b)

The real part, V , of the complex speed, V, represents
the standard classical speed, which is differentiable and
independent of resolution, while the imaginary part, U ,
is a new quantity arising from fractality, which is non-
-differentiable and resolution-dependent. In the usual
classical limit, dt À τ ,

v+ = v− = v, u+ = u− = 0, (15a,b)
so that
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V = v, U = 0. (16)
In the limit, dt ¿ τ ,

v+ = v− = 0, u+ = u− = u (17a,b)
and

V = u, U = 0; (18)
(viii) “in order to account for the infinity of geodesics

in the bundle, for their fractality and for the two val-
uedness of the derivative which all come from the non-
-differentiable geometry of the space-time continuum, one
therefore adopts a generalized statistical fluid like de-
scription, where instead of a classical deterministic speed
or of a classical fluid speed field, one uses a doublet of
fractal functions of spaces coordinates and time which are
also explicit functions of resolution time” [16, 17]. Thus,
the average values of the quantities must be considered
in the previously mentioned sense [29–36]. Particularly,
the average of d±X is

〈d±X〉 = d±x (19)
with

〈d±ξ〉 = 0; (20a,b)
(ix) in such an interpretation, the “particles” are iden-

tified with the geodesics themselves. As a consequence,
any measurement is interpreted as a sorting out (or se-
lection) of the geodesics by the measuring device [16, 17].

Let us now assume that the movement curves (con-
tinuous but non-differentiable) are immersed in a 3-
dimensional space, and that X of components Xi (i =
1, 3) is the position vector of a point on the curve. Let us
also consider a function f(X, t) and the following Taylor
series expansion, up to the second order

d±f =
∂f

∂t
dt +∇f · d±X

+
1
2

∂2f

∂Xi∂Xj
d±Xi d±Xj . (21a,b)

The relations (21a,b) are valid in any point of the
space-time manifold and also for the points “X”on the
fractal curve which we have selected in relations (21a,b).

From here, the forward and backward average values
of this relation, take the form

〈d±f〉 =
〈

∂f

∂t
dt

〉
+ 〈∇f · d±X〉

+
1
2

〈
∂2f

∂Xi∂Xj
d±Xi d±Xj

〉
. (22a,b)

We make the following stipulations: the mean values
of the function f and its derivates coincide with them-
selves and the differentials d±Xi and dt are independent.
Therefore the averages of their products coincide with the
product of average. Thus, Eqs. (22a,b) become

d±f =
∂f

∂t
dt +∇f 〈d±X〉

+
1
2

∂2f

∂Xi∂Xj

〈
d±Xi d±Xj

〉
(23a,b)

or more, using Eqs. (4a,b) with the properties (20a,b),

d±f =
∂f

∂t
dt +∇f d±x

+
1
2

∂2f

∂Xi∂Xj

(
d±xi d±xj +

〈
dξi
±dξj

±
〉)

. (24a,b)

Even the average value of the fractal coordinate, dξi
±,

is null (see (20a,b)), for the higher order of the fractal
coordinate average, the situation can be different. Let us
focus on the mean 〈dξi

±dξj
±〉. If i 6= j this average is zero

due the independence of dξi and dξj . So, using (10a,b)
we can write (see also [27, 28]):

〈
dξi
±dξj

±
〉

= ±δij λ2

τ

(
dt

τ

)(
2

DF

)
−1

(25a,b)

with

δij =

{
1 if i = j,

0 if i 6= j

and we had considered that〈
dξi

+dξj
+

〉
> 0 and dt > 0,

〈
dξi
−dξj

−
〉

> 0 and dt < 0.

Then Eqs. (24a,b) may be written under the form

d±f =
∂f

∂t
dt +∇f d±x +

1
2

∂2f

∂Xi∂Xj
d±xi d±xj

± ∂2f

∂Xi∂Xj
δij λ2

2τ

(
dt

τ

)(
2

DF

)
−1

dt. (26a,b)

If we divide by dt, and neglect the terms which contain
differential factors (for details on the method see [23]),
Eqs. (26a,b) are reduced to

d±f

dt
=

∂f

∂t
+ V ±∇f ± λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆f (27a,b)

with ∇2 =
∑

i
∂2

∂X2
i
. These relations also allow us to

define the operator

d±
dt

=
∂

∂t
+ V ±∇± λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆ (28a,b)

— see also [27, 28]. Under these circumstances, let us
calculate d̂f/dt. Taking into account Eqs. (12), (13),
and (28a,b), we obtain

d̂f

dt
=

1
2

[(
d+f

dt
+

d−f

dt

)
− i

(
d+f

dt
− d−f

dt

)]

=
1
2





∂f

∂t
+ V +∇f +

λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆f




+


∂f

∂t
+ V −∇f − λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆f







− i

2





∂f

∂t
+ V +∇f +

λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆f




−

∂f

∂t
+ V −∇f − λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆f
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=
∂f

∂t
+

(
V + + V −

2
− i

V + − V −
2

)
∇f

− i
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆f =
∂f

∂t
+ V · ∇f

− i
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆f. (29)

This relation also allows us to define the fractal oper-
ator [27, 28]:

d̂
dt

=
∂

∂t
+ V · ∇ − i

λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆. (30)

We now apply the principle of scale covariance (for de-
tails see [27, 28]), and postulate that the passage from
classical (differentiable) mechanics to the “fractal” me-
chanics, which is considered here, can be implemented
by replacing the standard time-derivative, d/dt, by the
complex operator ( d̂/dt) (this result is the principle of
scale covariance given by Nottale in [1–8, 27, 28]). “This
operator ( d̂/dt) plays the role of a “covariant derivative
operator”, namely, it is used to write the fundamental
equation of dynamics under the same form as in the clas-
sical and differentiable case.

Under its above form, the covariant derivative operator
is not itself fully covariant since it involves second order
derivative terms, while it is a first order time derivative.
These second order terms imply that the Leibniz rule for
a product is no longer the first order Leibniz rule, but a
linear combination of the first and second order rules.

The strong covariance can be fully implemented by in-
troducing new tools allowing us to keep the form of the
first order Leibniz rule, despite the presence of the sec-
ond order derivates [16, 17]”. In this purpose, one defines
the complex speed operator

V̂ = V − i
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∇ (31)

— see also [16, 17, 27, 28].
Particularly, for movements on fractal curves of the

Peano type, i.e. in the fractal dimension DF ≡ 2, the com-
plex speed operator (31) takes the form given in [16, 17],

V̂DF=2 = V − i
λ2

2τ
∇. (32)

Thus, the covariant derivative recovers the standard
first order form of a total derivative in terms of partial
derivatives, namely, the strong covariance Nottale prin-
ciple [16, 17, 27, 28]:

d̂
dt

=
∂

∂t
+ V̂ · ∇. (33)

3. Fractal fluids of conductive type behavior

As a consequence, we are now able to write the conser-
vation law of the fractal function ε in a fractal space-time
under its strong covariant form

d̂ε

dt
=

∂ε

∂t
+ V̂ · ∇ε

≡ ∂ε

∂t
+ V · ∇ε− i

λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆ε = 0 (34)

or more, by separating the real and imaginary parts,
∂ε

∂t
+ V · ∇ε = 0, (35a)

−U · ∇ε =
λ2

τ

(
dt

τ

)(
2

DF

)
−1

∆ε. (35b)

Consequently, at the differentiable scale the local tem-
poral variation, ∂ε/∂t, and the term, V · ∇ε, are equal,
while at the non-differentiable scale, the term, U · ∇ε,
and ∆ε, compensate each other.

Particularly, for V = U (i.e. “synchronal” movements
at different scales), from (35a,b) we get the diffusion type
equation,

∂ε

∂t
=

λ2

τ

(
dt

τ

)(
2

DF

)
−1

∆ε. (36)

Such an equation is implied by the Fourier type law

j(ε) =
λ2

τ

(
dt

τ

)(
2

DF

)
−1

∇ε (37)

with a current density j(ε). Therefore, Eqs. (36) and (37)
describe the fractal fluid of conductive type behavior.

Particularly, for movements on fractal curves of the
Peano type, i.e. in the fractal dimension DF ≡ 2,
Eqs. (36) and (37) take the standard forms

∂ε

∂t
=

λ2

τ
∆ε (38)

and respectively

j(ε) =
λ2

τ
∇ε. (39)

Let us now apply the previous considerations in the
numerical simulations of laser produced plasma. The
plasma expansion is solved in the planar coordinate sys-
tem in the region above the target surface (Fig. 1). The
y-axis coincides with the laser beam axis and is directed
along the outer normal to the target surface. The plasma
evolution is described with the following assumptions:
(i) the plasma is in the state of local thermo-dynamical
equilibrium and satisfies the quasi-neutrality condition;
(ii) the expansion is described in the approximation of
a diffusion type equation; (iii) the source term is intro-
duced through the boundary conditions.

In such circumstances, the two-dimensional gas dy-
namics is described by the equation of concentration

∂n

∂t
= D∆n.

For the numerical integration, the following initial and
boundary conditions are taken:

i) The box integration domain is initially filled with
undisturbed gas,

n = n0 for t = 0, 0 ≤ (x× y) ≤ (Lx × Ly)
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Fig. 1. Integration domain used for the numerical sim-
ulation of the laser-produced plasma expansion.

Fig. 2. The contour curves of total atom density for
various time moments as resulting from the numerical
simulation of the diffusion equation.

that is preserved on the boundaries, n(t, x, Ly) =
n(t, Lx/2, y) = n(t,−Lx/2, y) = nmax/1000;

ii) The interaction of the laser beam with the target
produces a plasma source located on the target surface,
which is assumed to have a Gaussian space-time profile

n = nmax exp
(
− (t− τ)2

(τL/2)2

)
exp

(
− x2

(dL/2)2

)
,

with dL, τL similarly with the laser beam space-time full
widths. We underline that the ablation takes place only
into a region with a characteristic diameter of about
100 µm. The maximum atoms density nmax is taken
according to the critical electron density (ne c = 3.9 ×
1021 cm−3 [37]) at the laser wavelength (λ = 532 nm).

The diffusion equation of concentration with the ini-
tial and boundary conditions is numerically solved us-

Fig. 3. The contour curves of total atom density for
various time moments as resulting from the numerical
simulation of the diffusion equation in the presence of a
wall.

ing finite differences [38] and the following parameters:
Lx = 800 µm, Ly = 400 µm, τL = 10 ns, dL = 100 µm,
nmax = 1.95 × 1021 cm−3, n = nmax/1000. Moreover, if
the diffusion takes place in the presence of a wall, the
previous condition is replaced by ∂n/∂y(t, x, Ly) = 0.

In Figs. 2 and 3 the two-dimensional contour curves of
the total atom density at the time moments t = 2 ns (a),
t = 6 ns (b), and t = 10 ns (c) are given as obtained
from the numerical simulations (Fig. 2 in the absence of
wall, Fig. 3 in the presence of wall). The following con-
siderations result: (i) the plasma plume “disappears” by
diffusion; (ii) near the wall the plasma plume is “regen-
erating”.

4. Fractal fluids of convection type behavior

The inertial principle in its strong covariance form
(Nottale’s principle [16, 17, 27, 28]) is reduced to an equa-
tion of the Navier–Stokes type (geodesics equation),

d̂V
dt

=
∂V
∂t

+ V̂ · ∇V ≡ ∂V
∂t

+ V · ∇V

− i
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆V = 0 (40)

with a imaginary viscosity coefficient ν:

ν = i
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

. (41)

This means that the local complex acceleration field,
∂V/∂t, the convective term, V · ∇V, and the dissipative
one, ∆V, reciprocally compensate in any point of the
fractal curve. Moreover, the behavior of the fractal fluid
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is visco-elastic type or hysteretic type. Such results are
in agreement with the opinions given in [39, 40]: the frac-
tal fluid can be described by Kelvin–Voight or Maxwell
rheological model with imaginary structure coefficient ν.

Two types of motion are distinguished:
i) Rotational motions.
Replacing the complex speed field (13) in geodesics

equation (40) and separating the real and the imaginary
parts we obtain:

∂V

∂t
+ V · ∇V −U · ∇U

−λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆U = 0, (42a)

∂U

∂t
+ U · ∇V + V · ∇U

+
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆V = 0. (42b)

Using the operatorial relations
∇(V ·U) = (V · ∇)U + (U · ∇)V

+V × (∇×U) + U × (∇× V ), (43a)

∇V 2 = 2(V · ∇)V + 2V × (∇× V ), (43b)

∇U2 = 2(U · ∇)U + 2U × (∇×U), (43c)
Eqs. (42a,b) become

∂V

∂t
+∇

(
V 2

2
− U2

2

)
− V × (∇× V )

+U × (∇×U)− λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆U = 0,

∂U

∂t
+∇(V ·U)− V × (∇×U)−U × (∇× V )

+
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆V = 0 (44a,b)

and moreover, introducing “the vortices”

ΩV =
1
2
(∇× V ), ΩU =

1
2
(∇×U), (45a,b)

∂V

∂t
+∇

(
V 2

2
− U2

2

)
− 2V ×ΩV + 2U ×ΩU

−λ2

2τ

(
dt

τ

)(2/DF)−1

∆U = 0, (46a)
∂U

∂t
+∇(V ·U)− 2V ×ΩU − 2U ×ΩV

+
λ2

2τ

(
dt

τ

)(2/DF)−1

∆V = 0. (46b)

Relations (46a,b) characterize the transport of the spe-
cific momentum both at the differentiable scale, (46a),
and the non-differentiable scale (46b). It is conditioned
by the inertial effects, (∇V 2,∇U2), (∇(V · U)), rota-
tional effects (V × ΩV ,U × ΩU ), (V × ΩU , U × ΩV ),
and dissipative effects ((∆V , ∆U));

ii) Irrotational motions.
In this case

∇× V = 0, (47)
so that the speed field (13) can be expressed through the
gradient of a scalar function Φ,

V = ∇Φ (48)
named the scalar potential of the complex speed field,
Φ = ReΦ + iImΦ.

Substituting Eq. (48) in Eq. (40) and using the opera-
torial relationship

∂

∂t
∇ = ∇ ∂

∂t
, (49)

it results

∇

∂Φ

∂t
+

1
2
(∇Φ)2 − i

λ2

τ

(
dt

τ

)(
2

DF

)
−1

∆Φ




= 0 (50)
and by integration, a Bernoulli type equation

∂Φ
∂t

+
1
2
(∇Φ)2 − i

λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆Φ = F (t) (51)

with F (t) a function which depends only on time. Par-
ticularly, for Φ of the form [27, 28]

Φ = − i
λ2

τ

(
dt

τ

)(
2

DF

)
−1

ln ψ, (52)

where ψ is a new complex scalar function, Eq. (51) with
the operatorial identity

∆ψ

ψ
= ∆ ln ψ + (∇ ln ψ)2 (53)

takes the form

λ4

4τ2

(
dt

τ

)(
4

DF

)
−2

∆ψ + i
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∂ψ

∂t

+
F (t)

2
ψ = 0. (54)

From here, “Schrödinger” type geodesics result for F (t) ≡
0, i.e.

λ4

4τ2

(
dt

τ

)(
4

DF

)
−2

∆ψ + i
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∂ψ

∂t

= 0 (55)
— for more details see Sect. 4.3 from [28]. Particularly,
for the movement on fractal curves of the Peano type, i.e.
in the fractal dimension DF = 2, and Compton’s length
and temporal scales,

λ =
~

2m0c
, τ =

~
m0c2

, (56a,b)

Eq. (55) takes the Schrödinger standard form
~2

2m
∆ψ + i~

∂ψ

∂t
= 0. (57)

Also, a fractal hydrodynamic model can be devel-
oped. Thus, by replacing the complex speed field (48)
in Eq. (40), and separating the real and imaginary parts
we obtain
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m0
∂V

∂t
+ m0V · ∇V = −∇(Q), (58a)

∂U

∂t
+∇(V ·U) +

λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∆V = 0, (58b)

where Q is the fractal potential

Q = −m0U
2

2
−m0

λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∇ ·U . (59)

The explicit form of the complex speed field is given by
means of the expression

ψ =
√

ρe iS (60)
with ρ the amplitude and S the phase. Then Eq. (48)
with

Φ = − i
λ2

τ

(
dt

τ

)(
2

DF

)
−1

ln
(√

ρe iS
)

(61)

involves the complex velocity field components

V =
λ2

τ

(
dt

τ

)(
2

DF

)
−1

∇S, (62a)

U =
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∇ ln ρ, (62b)

while the fractal potential (59) is given by the simple ex-
pression

Q = −m0

(
dt

τ

)(
2

DF

)
−1 ∆

√
ρ√

ρ
(63)

— for other details see [19].
With Eqs. (62a,b), Eq. (58b) takes the form

∇
(

∂ ln ρ

∂t
+ V · ∇ ln ρ +∇ · V

)
= 0 (64)

or, by integration with ρ 6= 0:
∂ρ

∂t
+∇ · (ρV ) = T (t) (65)

with T (t), a function which depends only on time.
Equation (58a) corresponds to the momentum conser-

vation law, while Eq. (65), with T (t) ≡ 0, to the proba-
bility density conservation law. So equations

m0

(
∂V

∂t
+ V · ∇V

)
= −∇(Q), (66a)

∂ρ

∂t
+∇ · (ρV ) = 0 (66b)

with Q given by (63), form the fractal hydrodynamic
equations in the fractal dimension DF. The fractal poten-
tial (63) is induced by the non-differentiable space-time
(for more details see [19]).

5. Conclusions

The main conclusions of the present paper are the
following:

i) A short reminder of the Nottale scale relativity the-
ory in correspondence with Cresson’s mathematical
procedures is given;

ii) The synchronization of the movements at differ-
ent scales gives conductive properties to the fractal
fluid. In such a context, by numerical simulation
of plasma expansion, it results that plasma plume
disappears by diffusion or is self-generating near a
wall;

ii) The non-synchronous movement at different scales
gives conductive properties to the fractal fluid.
In such a context, at Compton scale, the irrota-
tional fractal fluid is described by the Schrödinger
equation.
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