Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Development of Sponge Microspicule Cream as a Transdermal Delivery System for Protein and Growth Factors from Deer Antler Velvet Extract
Kritsanaporn TansathienPuvamin SuriyaaumpornPonwanit CharoenputtakhunTanasait NgawhirunpatPraneet OpanasopitWorranan Rangsimawong
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2019 Volume 42 Issue 7 Pages 1207-1215

Details
Abstract

Sponge spicules are needle-like structures and used for dermabrasive treatment of the skin. This research aimed to develop an effective delivery system by using sponge spicules for enhancing skin permeation of bioactive proteins and growth factors from deer antler velvet (DAV). DAV was extracted by sonication and bioactivity studies were evaluated. The size of microspicules (MSs) was reduced and mixed with DAV extract cream. In vitro skin permeation was analyzed by using bovine serum albumin–fluorescein isothiocyanate conjugate (BSA–FITC) as a model macromolecular compound. For in vivo study, DAV extract formulations were applied on the skin of healthy humans, and effects were evaluated. Results showed that DAV extract containing proteins and growth factors increased the proliferation and migration of skin fibroblast cells. This extract was homogeneously mixed with spicule cream. Without blending, MS was 11.89 µm wide and 176.77 µm long; blending time exhibited short and broken MSs (MBs) for short blending (30 s) and fine powder (MF) for long blending (10 min). MS cream showed the highest permeation of BSA–FITC through the skin (2.26-fold enhancement), but it resulted in skin irritation. Therefore, MB cream that increased the permeation of BSA–FITC by 1.94-fold was not significantly different from MS formulations chosen for in vivo study. Applying DAV-containing MB cream on the skin for 14 d decreased the melanin content and erythema value but increased elasticity and hydration. Therefore, the MB-containing cream can enhance the macromolecule delivery through the skin, improve the skin properties, and avoid skin irritation.

Graphical Abstract Fullsize Image
Content from these authors
© 2019 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top