Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Neuroprotective Effect of Sanguisorbae Radix against Oxidative Stress-Induced Brain Damage: in Vitro and in Vivo
Thi Thuy Ha NguyenSoon Ock ChoJu Yeon BanJu Yeon KimHyun Soo JuSang Bum KohKyung-Sik SongYeon Hee Seong
Author information
JOURNAL FREE ACCESS

2008 Volume 31 Issue 11 Pages 2028-2035

Details
Abstract

Sanguisorbae radix (SR), the root of Sanguisorba officinalis L. (Rosaceae), has been traditionally used for its anti-inflammatory, anti-infectious and analgesic activities in Korea. Previous work has shown that SR prevents neuronal cell damage induced by Aβ (25—35) in cultured rat cortical neurons. The present study was carried out to further investigate the neuroprotective effect of SR on oxidative stress-induced toxicity in primary culture of rat cortical neurons, and on ischemia-induced brain damage in rats. SR, over a concentration range of 10—50 μg/ml, inhibited H2O2 (100 μM)-induced neuronal death, which was significantly inhibited by MK-801 (5 μM), an N-methyl-D-aspartate (NMDA) receptor antagonist, and verapamil (20 μM), an L-type Ca2+ channel blocker. Pretreatment of SR (10—50 μg/ml), MK-801 (5 μM), and verapamil (20 μM) inhibited H2O2-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) measured by a fluorescent dye, Fluo-4 AM. SR (10—50 μg/ml) inhibited H2O2-induced glutamate release into medium measured by HPLC, and generation of reactive oxygen species (ROS) measured by 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA). In vivo, SR prevented cerebral ischemic injury induced by 2-h middle cerebral artery occlusion (MCAO) and 24-h reperfusion. The ischemic infarct and edema were significantly reduced in rats that received SR (10, 30 mg/kg, orally), with a corresponding improvement in neurological function. Catechin isolated from SR inhibited H2O2-induced neuronal death in cultures. Taken together, these results suggest that SR inhibits H2O2-induced neuronal death by interfering with the increase of [Ca2+]i, and inhibiting glutamate release and generation of ROS, and that the neuroprotective effect of SR against focal cerebral ischemic injury is due to its anti-oxidative effects. Thus SR might have therapeutic roles in neurodegenerative diseases such as stroke.

Content from these authors
© 2008 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top